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Abstract. In this paper we present a keyphrase extraction system that
can extract potential phrases from a single document in an unsupervised,
domain-independent way. We extract word n-grams from input docu-
ment. We incorporate linguistic knowledge (i.e., part-of-speech tags), and
statistical information (i.e., frequency, position, lifespan) of each n-gram
in defining candidate phrases and their respective feature sets. The pro-
posed approach can be applied to any document, however, in order to
know the effectiveness of the system for digital libraries, we have carried
out the evaluation on a set of scientific documents, and compared our
results with current keyphrase extraction systems.

1 Introduction

A keyphrase is a short phrase (typically it contains one to three words) that
provides a key idea of a document. A keyphrase list is a short list of keyphrases
(typically five to fifteen phrases) that reflects the content of a single document,
capturing the main topics discussed and providing a brief summary of its content.
If every document is attached with keyphrases, a user can choose easily which
documents to read and/or understand the relationships among documents. Doc-
ument keyphrases are used successfully in Information Retrieval (IR) and Natu-
ral Language Processing (NLP) tasks, such as document indexing [9], clustering
[10], classification [14], and summarization [4]. Among all of them, document in-
dexing is one important application of automatic keyphrase generation in digital
libraries, where the major part of publications usually are not associated with
keyphrases. Furthermore, keyphrases are well exploited for other tasks such as
thesaurus creation [13], subject metadata enrichment [25], query expansion [21],
and automatic tagging [18].

Despite of having many applications, only a small percent of documents have
keyphrases assigned to them. For instance, in digital libraries, authors assign
keyphrases to their documents when they are instructed to do so [9], other
digital content, like news or magazine articles, usually do not have keyphrases
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since it is neither mandatory nor necessary for the document authors to pro-
vide keyphrases. Manually assigning keyphrases to documents is tedious, time-
consuming, and as well as expensive. Therefore, automatic methods that gener-
ate keyphrases for a given document are beneficial.

Witten et al. [24] defined two fundamental approaches for automatic key-
phrase generation:

1. Keyphrase assignment: in this case, the set of possible keyphrases is limited
to a predefined vocabulary of terms (e.g., subject headings, classification
schemes, thesaurus). The task is to classify documents based on the content
into different keyphrase classes that correspond to the terms of a pre-defined
list. In this process, the document can be associated with keyphrases consti-
tuted by words (or n-grams) that are not contained in the document.

2. Keyphrase extraction: in contrast to the previous case, keyphrase extraction
selects the most indicative phrases present in the input document. In this
process, selection of keyphrases does not depend on any vocabulary and such
phrases are supposed to be available in the document itself.

In this paper, we concentrate on the keyphrase extraction problem leaving the
more general task of keyphrase assignment. The work presented here is part of
a wide research project PIRATES (Personalized Intelligent tag Recommenda-
tion and Annotation TEStbed) [2,3,7], a framework for personalized content
retrieval, annotation, and classification. Using an integrated set of tools, PI-
RATES framework lets the users experiment, customize, and personalize the
way they retrieve, filter, and organize the large amount of information available
on the Web. Furthermore, the framework undertakes a novel approach that auto-
mates typical manual tasks such as content annotation and tagging, by means of
personalized tag recommendations and other forms of textual annotations (e.g.,
keyphrases).

The rest of this paper is organized as follows: Section 2 introduces the re-
lated work. The proposed domain independent keyphrase extraction system is
described in detail in Section 3. Empirical evaluation is presented in Section 4
and finally we conclude the paper in Section 5.

2 Related Work

Keyphrase extraction methods usually work in two stages: (i) a candidate identi-
fication stage, identifies all possible phrases from the document and (ii) a selec-
tion stage, selects only few candidate phrases as keyphrases. Existing methods
for keyphrase extraction can be divided into supervised and unsupervised ap-
proaches, illustrated in the following:

A. The supervised approach treats the problem as a classification task. In this
approach, a model is constructed by using training documents, that have
already keyphrases assigned (by humans) to them. This model is applied
in order to select keyphrases from previously unseen documents. Turney



(developer of Extractor!) [22] is the first one who formulated keyphrase ex-
traction as a supervised learning problem. According to him, all phrases
in a document are potential keyphrases, but only phrases that match with
human assigned ones are correct keyphrases. Turney uses a set of paramet-
ric heuristic rules and a genetic algorithm for extraction. Another notable
keyphrase extraction system is KFA (Keyphrase Extraction Algorithm) [24];
it builds a classifier based on the Bayes’ theorem using training documents,
and then it uses the classifier to extract keyphrases from new documents. In
the training and extraction, KEA analyzes the input document depending
on orthographic boundaries (such as punctuation marks, newlines) in order
to find candidate phrases. In KEA two features are exploited: tfxidf (term
frequency x inverse document frequency) and first occurrence of the term.
Hulth [11] introduces linguistic knowledge (i.e., part-of-speech (pos) tags) in
determining candidate sets: 56 potential pos-patterns are used by Hulth in
identifying candidate phrases in the text. The experimentation carried out
by Hulth has shown that, using a pos tag as a feature in candidate selec-
tion, a significant improvement of the keyphrase extraction results can be
achieved. Another system that relies on linguistic features is LAKE (Learn-
ing Algorithm for Keyphrase Extraction) [8]: it exploits linguistic knowledge
for candidate identification and it applies a Naive Bayes classifier in the final
keyphrase selection.

All the above systems need a training data in small or large extent in order to
construct an extraction system. However, acquiring training data with known
keyphrases is not always feasible and human assignment is time-consuming.
Furthermore, a model that is trained on a specific domain, does not always
yield to better classification results in other domains.

B. The unsupervised approach?® eliminates the need of training data. It selects a
general set of candidate phrases from the given document, and it uses some
ranking strategy to select the most important candidates as keyphrases for
the document.

Barker and Cornacchia [1] extract noun phrases from a document and ranks
them by using simple heuristics based on their length, frequency, and the
frequency of their head noun.

In [5], Bracewell et al. extract noun phrases from a document, and then
cluster the terms which share the same noun term. The clusters are ranked
based on term and noun phrase frequencies. Finally, top-n ranked clusters
are selected as keyphrases for the document.

In [17], Liu et al. propose another unsupervised method, that extracts keyphrases
by using clustering techniques which assure that the document is semanti-
cally covered by these terms. Another unsupervised method that utilizes

! http://www.extractor.com/

2 Note that unsupervised approaches might use tools like POS taggers which rely on
supervised approaches. However, as such tools are usually already available for most
languages, we consider an approach is unsupervised if it does not make use of any
training documents that have already keyphrases assigned to them.



document cluster information to extract keyphrases from a single document
is presented in [23].

Employing graph-based ranking methods for keyphrase extraction is another
widely used unsupervised approach, exploited for example in [16]. In such
methods, a document is represented as a term graph based on term relat-
edness, and then a graph-based ranking model algorithm (similar to the
PageRank algorithm [6]) is applied to assign scores to each term. Term re-
latedness is approximated in between terms that co-occur each other within
a pre-defined window size.

Keyphrase extraction systems that are developed by following unsupervised
approach are in general domain independent since they are not constrained
by any specific training documents.

3 Domain Independent Keyphrase Extraction (DIKpE)
System Description

Domain independent keyphrase extraction approach, which doesn’t enforce any
training data has many applications. For instance, it can be useful for a user
who wants to know quickly the content of a new Web page, or who wants to
know the main claim of a paper at hand. In such cases, keyphrase extraction
approach that can be applied without a corpus® of the same kind of documents is
very useful. Simple term frequency is sometimes sufficient to know the document
overview; however, more powerful techniques are desirable.

Our approach is applied to any document without the need of a corpus. It
is solely based on a single document. In the following, we provide a detailed
description of our approach. The general workflow in DIKpE system is shown
in Figure 1 and is illustrated in detail in the following subsections 3.1, 3.2,
and 3.3. We follow three main steps: (i) extract candidate phrases from the
document (ii) calculate feature values for candidates (iii) compute a score for
each candidate phrase from its feature values and rank the candidate phrases
based on their respective scores, in such a way, highest ranked phrases being
assigned as keyphrases.

3.1 Stepl: Candidate Phrase Extraction
This step is divided in the following substeps:

— Format conversion. We assume that the input document can be in any
format (e.g., pdf), and as our approach only deals with textual input, our
system first exploits document converters to extract the text from the given
input document.

— Cleaning and Sentence delimiting. The plain text form is then processed
to delimit sentences, following the assumption that no keyphrase parts are
located simultaneously in two sentences. Separating sentences by inserting

3 A collection of documents.
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Figure 1. Workflow in DIKpE system

a sentence boundary is the main aim of this step. The result of this step
is a set of sentences each containing a sequence of tokens, bounded by the
sentence delimiter.

— POS tagging and n-gram extraction. We assign a pos tag (noun, adjec-
tive, verb etc.) to each token in the cleaned text, by using Stanford log-linear
part-of-speech tagger®. The Stanford pos tagger uses 36 types® of pos tags
(for the documents written in Italian, an Italian pos tagger developed us-
ing n-gram model trained on the La Repubblica corpus® is utilized.). The
assigned pos tags are later utilized for filtering candidate phrases and in
calculating pos value feature. The next step in our procedure is to extract
n-grams. We have observed that in the dataset utilized for the experimenta-
tion, phrases that are constituted by more than 3 words are rarely assigned as
keyphrases, so, in our process, we set the value of ‘n’ to the maximum value
3. We extract all possible subsequences of phrases up to 3 words (uni-grams,
bi-grams, and tri-grams).

— Stemming and Stopword removing. From the extracted n-grams, we
remove all phrases” that start and/or end with a stopword and phrases con-
taining the sentence delimiter. Partial stemming (i.e., unifying the plural
forms and singular forms which mean essentially the same thing) is per-
formed using the first step of Porter stemmer algorithm [20]. To reduce the
size of the candidate phrase set, we have filtered out some candidate phrases
by using their pos tagging information. Uni-grams that are not labeled as
noun, adjective, and verb are filtered out. For bi-grams and tri-grams, only

4 http://nlp.stanford.edu/software /tagger.shtml.

5 pos tagging follows the Penn Treebank tagging scheme.

5 http://dev.sslmit.unibo.it /corpora/corpus.php?path=&name=Repubblica
7 In our use of this term, we mean any n-gram (n=1,2,3) phrase.



pos-patterns defined by Justeson and Katz [12] and other patterns that in-
clude adjective and verb forms are considered.

— Separating n-gram lists. Generally, in a document, uni-grams are more
frequent than bi-grams, and bi-grams are more frequent than tri-grams and
so on. In the calculation of phrase frequency (explained in Section 3.2) fea-
ture, this shows a bias towards n-grams which are having small value of ‘n’.
In order to solve this problem, we have separated n-grams of different lengths
(n=1, n=2, and n=3) and arranged them in three different lists. These lists
are treated separately in calculation of feature sets and in final keyphrase se-
lection. As a result of step 1, we obtain a separate list of uni-gram, bi-gram,
and tri-gram candidate phrases (with corresponding pos tags) per document
after the proper stemming and stopword removal explained above.

3.2 Step2: Feature Calculation

The candidate phrase extraction step is followed by a feature calculation step
that characterizes each candidate phrase by statistical and linguistic properties.
Five features for each candidate phrase are computed; these are: phrase fre-
quency, pos value, phrase depth, phrase last occurrence, and phrase lifespan,
illustrated in the following.

— phrase frequency: this feature is same as the classical term frequency (tf)
metric. But Instead of calculating it with respect to the whole length of the
document, we compute it with respect to each n-gram list. With a separate
list for each n-gram in hand, the phrase frequency for phrase P in a list L is:

frequency(P, L) = %

where:
e freq(P, L) is the number of times P occurs in L;
e size(L) is the total number of phrases included in L.

— pos value: as described in [1], most author-assigned keyphrases for a doc-
ument turn out to be noun phrases. For this reason, in our approach, we
stress the presence of a noun in a candidate phrase while computing a pos
value for the phrase. A pos value is assigned to each phrase by calculating
the number of nouns (singular or plural) normalizing it by the total number
of terms in the phrase. For instance, in a tri-gram phrase, if all tokens are
noun forms, then the pos value of the phrase is 1, if two tokens are noun
forms, then the pos value is 0.66, and if one noun is present, the value is
0.33. All remaining phrases which do not include at least one noun form are
assigned the pos value 0.25. The same strategy is followed for bi-gram and
uni-gram phrases.

— phrase depth: this feature reflects the belief that important phrases often
appear in the initial part of the document especially in news articles and
scientific publications (e.g., abstract, introduction). We compute the position



in the document where the phrase first appears. The phrase depth value for
phrase P in a document D is:

first_index(P)

depth(P,D) =1—| size(D) s

where first_index(P) is the number of words preceding the phrase’s first
appearance; size(D) is the total number of words in D.

The result is a number between 0 and 1. Highest values represent the presence
of a phrase at the very beginning of the document. For instance, if a phrase
appears at 16th position, while the whole document contains 700 words, the
phrase_depth value is 0.97, indicating the first appearance at the beginning
of the document.

— phrase last occurrence: we give also importance to phrases that appear
at the end of the document, since keyphrases may also appear in the last
parts of a document, as in the case of scientific articles (i.e., in the conclusion
and discussion parts). The last occurrence value of a phrase is calculated as
the number of words preceding the last occurrence of the phrase normalized
with the total number of words in the document. The last occurrence value
for phrase P in a document D is:

last_index(P)

last_occurrence(P, D) = W )
size

where last_index(P) is the number of words preceding the phrase’s last ap-
pearance; size(D) is the total number of words in D.

For instance, if a phrase appears for the last time at 500th position last time
in a document that contains 700 words, then the phrase_last_occurrence
value is 0.71.

— phrase lifespan: the span value of a phrase depends on the portion of
the text that is covered by the phrase. The covered portion of the text
is the distance between the first occurrence position and last occurrence
position of the phrase in the document. The lifespan value is computed by
calculating the difference between the phrase last occurrence and the phrase
first occurrence. The lifespan value for phrase P in a document D is:

[last_index(P) — first_index(P))
size(D) ’

lifespan(P, D) =

where last_index(P) is the number of words preceding the phrase’s last ap-
pearance; first_index(P) is the number of words preceding the phrase’s first
appearance; size(D) is the total number of words in D.

The result is a number between 0 and 1. Highest values mean that the phrase
is introduced at the beginning of the document and carried until the end of
the document. Phrases that appear only once through out the document
have the lifespan value 0.

As a result of step 2, we get a feature vector for each candidate phrase in the
three n-gram lists.



3.3 Step3: Scoring and Ranking

In this step a score is assigned to each candidate phrase which is later exploited
for the selection of the most appropriate phrases as representatives of the docu-
ment. The score of each candidate phrase is calculated as a linear combination of
the 5 features. We call the resulting score value keyphraseness of the candidate
phrase. The keyphraseness of a phrase P with non empty feature set {f1,fs,...f5},
with non-negative weights {wy,wa,..w5} is:

[

keyphraseness(P) = M

D im1 Wi
In this initial stage of the research, we assign equal weights to all features,
yielding to the computation of the average. Therefore:

1 n
keyphraseness(P) = EZ fis
i=1

where:

— n is the total number of features (i.e., 5 in our case);
f1 is the phrase frequencys;

fy is the phrase depth;

f3 is the phrase pos value;

fy is the phrase last occurrence;

f5 is the phrase lifespan.

Producing Final Keyphrases. The scoring process produces three separate
lists L, Ls, and L3 containing respectively all the uni-grams, bi-grams and tri-
grams with their keyphraseness values. We then select some keyphrases, which
are considered to be the most important from each list. In order to produce the
‘k’ final keyphrases, we have followed the same strategy that was utilized in [15].
In every list, the candidate phrases are ranked in descending order based on the
keyphraseness values. Top 20% (i.e., 20% of ‘k’) keyphrases are selected from
“L3”, Top 40% (i.e., 40% of ‘k’) are selected from “Ls”, and remaining 40% of
rest of ‘6’ keyphrases are selected from “L;’. In this way top k keyphrases for
the given document are extracted.

4 Evaluation

The effectiveness and efficiency of our system has been tested on a publicly
available keyphrase extraction dataset [19] which contains 215 full length docu-
ments from different computer science subjects. Each document in the dataset
contains a first set of keyphrases assigned by the paper’s authors and a sec-
ond set of keyphrases assigned by volunteers, familiar with computer science
papers. DIKpE is evaluated by computing the number of matches between the



keyphrases attached to the document and the keyphrases extracted automati-
cally. The same partial stemming strategy exploited in candidate phrase selection
(see section 3.1) is used also in matching keyphrases. For instance, given the fol-
lowing keyphrase sets S {component library, facet-based component retrieval,
ranking algorithm, component rank, retrieval system} and Ss {component li-
brary system, web search engine, component library, component ranks, retrieval
systems, software components} suggested by our system, the number of exact
matches is 3: {component library, component rank, retrieval system}.

We have carried out two experiments in order to test our system’s perfor-
mance. For the first experiment, we have considered keyphrase extraction works
presented by Nguyen&Kan [19] and KEA [24] as baseline systems. From the
available 215 documents, Nguyen&Kan has taken 120 documents to compare
these with KEA. The maximum number of keyphrases for each document (i.e.,
‘k’) is set to ten in Nguyen&Kan. We have taken their results [19] as refer-
ence, and in the first experiment we have worked on 120 documents randomly
selected from the 215 documents. In both the experiments, we removed the bib-
liography section from each document in the dataset in order to better utilize
the phraselast occurrence feature.

Table-1 shows the average number of exact matches of three algorithms when 10
keyphrases are extracted from each document: our system significantly outper-
forms the other two. For the second experiment, we have extracted keyphrases

Table 1. Overall Performances

System Average # of exact matches
KEA 3.03
Nguyen&Kan 3.25
DIKpE 4.75

for all 215 documents and compared our approach exclusively with the results
provided by KEA. We have utilized a total of 70 documents (with keyphrases as-
signed by authors) extracted from the 215 documents dataset to train the KEA
algorithm. For each document, we extracted 7, 15 and 20 top keyphrases using
both our approach and KEA.

The results are shown in Table-2: it is clear that even though our system does
not undertake any training activity, it greatly outperforms KEA performance.

Table 2. Performance of DIKpE compared to KEA

Keyphrases|Average number of exact matches

Extracted KEA DIKpE
7 2.05 3.52
15 2.95 4.93
20 3.08 5.02




Table 3. Top seven keyphrases extracted by DIKpE system to three sample documents

Document  #26. Accelerating #57. Contour-based #136. Measuring e-
3D Convolution Partial Object Government Impact:
using Graphics Recognition using Existing  practices  and
Hardware. Symmetry in Image shortcomings.

Databases.

keyphrases convolution object e-government

assigned by hardware accelera- image law

the tion

document  volume visualization contour interoperability

authors

recognition architectures
symmetry measurement
evaluation

keyphrases 3D conwvolution occlusion benchmark

assigned by filtering object recognition measurement

volunteers wvisualization symmetry e-government
volume rendering contour public administration

estimation business process

keyphrases high pass filters partial object recog-
nition

object recognition
objects in images

assigned by volume rendering
DIKpE sys- filter kernels
tem

3d convolution occlusion of objects

convolution objects
visualization symmetry
filtering contours

measuring e-government im-
pact

business process
e-governmental services

public administration
e-government
measurement

business

A sample output of the DIKpE system for three sample documents is shown

Table-3. For each document top seven keyphrases extracted by DIKpE are pre-
sented: keyphrases that are assigned by the document authors are shown in
normal font, Italics indicates keyphrases that are assigned by volunteers, and
boldface in DIKpE’s row (third row) shows keyphrases that have been auto-
matically extracted and matched with author or volunteer assigned keyphrases.
Even if some keyphrases of DIKpE do not match with any of the keyphrases,
they are still correctly related to the main theme of the document.

5 Conclusion and Future Work

In this paper, we have presented an innovative and hybrid approach to keyphrase
extraction that works on a single document without any previous parameter tun-
ing. Our current work focuses on the integration of DIKpE system with other



tools presented in the PIRATES framework, in order to exploit keyphrase ex-
traction method for the automatic tagging task. Further work will focus on the
evaluation procedure. We assumed here that a keyphrase extraction system is
optimal, if it provides the same keyphrases that an author defines for his doc-
uments. However, in general there may exist many other keyphrases (different
than those pre-assigned by authors) that are also appropriate for summarizing
a given document. Thus, a further aspect to consider is to take into account
the human subjectivity in assigning keyphrases, considering also adaptive per-
sonalization techniques for tuning the extraction process to the specific user’s
interests. In this paper, we evaluated DIKpE performance on scientific publica-
tions which are well structured and lengthy in general, in future, we are planning
to test the effectiveness of the system on short documents such as news or blog
entries. Finally, for the future work, we plan to investigate different ways to
compute the coefficients of linear combination of features. We also need to con-
centrate on a better way to decide the number of keyphrases to be extracted by
the system, instead of using a fixed number.
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