
Extreme Markup Languages 2007® Montréal, Québec
August 7-10, 2007

Converting into pattern-based schemas: a
formal approach

Antonina Dattolo
Department of Mathematics and
Applications R. Caccioppoli, University of
Napoli Federico II

Angelo Di Iorio
Department of Computer Science, University of

Bologna

Silvia Duca
Department of Computer Science,
University of Bologna

Antonio Angelo Feliziani
Department of Computer Science, University of

Bologna

Fabio Vitali
Department of Computer Science, University of Bologna

Abstract
A traditional distinction among markup languages is how descriptive or prescriptive they
are. We identify six levels along the descriptive/prescriptive spectrum. Schemas at a
specific level of descriptiveness that we call "Descriptive No Order" (DNO) specify a list
of allowable elements, their number and requiredness, but do not impose any order upon
them. We have defined a pattern-based model based on a set of named patterns, each
of which is an object and its composition rule (content model), enough to write descriptive
schemas for arbitrary documents. We show that any schema can be converted into a
pattern-based one without loss of information at the DNO level (invariant conversion). We
present a formal analysis of invariant conversions of arbitrary schemas as a
demonstration of the correctness and completeness of our pattern model. Although all
examples are given in DTD syntax, the results should apply equally to XSD, Relax NG,
or other schema languages.

Converting into pattern-based schemas: a formal
approach
Table of Contents
Introduction...1
Descriptive markup languages and patterns...2

Simplifying descriptive schemas..2
Alternatives...2
Mixed content models...3

Patterns for descriptive document structures..4
Invariant conversion among descriptive schemas..5

Refining the notion of descriptiveness...5
Introducing the notion of Invariant Conversion...6

Invariant conversion towards pattern-based documents: a formal analysis...9
Grammars and formal languages..9
The general grammar G..9
Our grammar P...9

Invariant conversion between DTDs..10
Extending the notion of invariant conversion: XML-Schema and RelaxNG...13
Conclusions...18
Acknowledgements...18
Bibliography...18
The Authors..19

Converting into pattern-based schemas: a
formal approach
Antonina Dattolo, Angelo Di Iorio, Silvia Duca, Antonio Angelo Feliziani, and
Fabio Vitali

§ Introduction
Given any set of XML document, there is an open number of schemas that validate all members of the
set, and reject all non-members. Not only schema languages allow some linguistic variety in expressing
the same constraints, but also different constraints can be devised that actually accept and reject the same
instances.

Of course, when dealing with XML documents, validation is only part of the story. Classification (i.e.,
the ability to associate meaning and procedures to each part of the document) is also a key aspect for XML
applications, and many would say actually more important than validation. When classifying documents,
the correct association of each element with its label is more important than clearly specifying the set of
rejected documents. Thus not only different schemas can be associated to the same set of documents for
validation purposes, but also the different emphasis on validation vs. classification can imply or require
different features to be made available in the schemas themselves, further increase their total number.

Given the different emphasis that can be placed in operating with XML documents, schemas to deal with
the same set of documents can be written with different perspectives in order to look for different things.
Design patterns can be applied in the design of such schemas that can alleviate the problem of determining
the important and the not-so-important things to check in an XML document.

In particular, in the past we have fruitfully applied design patterns to descriptive schemas, whenever it is
more important to describe what is in a document than to check for violation to structural rules. This paper
has grown out of a question raised at Extreme 2005, after the presentation of our work on a pattern-based
approach for descriptive schemas [DIGV05]. On that occasion, we presented a very small set of patterns
meant to design any descriptive schema for arbitrary documents. During the question-time, we were
recommended to further investigate the properties of such model in a formal way.

The goal of this work is then to demonstrate the completeness of those patterns, as a means for descriptive
validation (validation against descriptive schemas) of document classes. We want to show that any schema
can be automatically converted into an 'equivalent' one (w.r.t. descriptiveness), which is exclusively based
on our patterns, and that such schema can accept the same class.

This of course requires both explaining what concept of "equivalence" we have adopted and which is the
actual meaning of such conversion. Actually we first need to clarify what we mean for 'descriptive schemas'
and 'descriptive validation' and what we mean these descriptive schemas for. In many ways, this work
starts off the traditional dichotomy between prescriptive and descriptive markup languages [Ren00]
[Qui96]. We note that many prescriptive constructs are used in descriptive contexts (and viceversa), and
that these approaches are very often mixed with each other. This may happen for different reasons: the
fact that some schemas are widely known and users prefer to adapt and reuse them rather than re-building
new ones (still, not a bad choice considering that a lot of benefits derive from such choice), as well as the
fact that designers receive only partial information about the domain they are modeling and the exact kind
of validation that will be concretely needed. Last but not least, it is undeniable that constraining choices
available in validation languages are often too powerful, and easily lead us to over-design of schemas.

In 2005 we started discussing 'descriptive schemas' and proposed some substantial simplification which
can be made by considering the nature and purposes of documents being analyzed. These simplifications
allow us to write simple and well-engineered schemas which better fit descriptive needs. This work further
delineates and formalizes those initial ideas.

To this end, we need to refine our notion of descriptiveness. A first result is the identification of some
subclasses of descriptive approaches for markup languages (that we call here "levels of descriptiveness").
Each subclass corresponds to some common needs and preferences according to which designers can relax
constraints, express information by adopting specific rules and patterns, and reformulate declarations. For

Copyright © 2007 by the author. Reproduced with permission of the author.

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 1

instance, we indicate with DNA (Descriptive No Alternatives) those schemas where alternative choices
are so irrelevant as to be omittable, with DNC (Descriptive No Cardinality) those schemas where rules
over cardinality can be relaxed, and with UD (Undescriptive) those schemas that accept all content models.

In particular, we identified the DNO level (Descriptive No Order) as a good solution for the
'descriptiveness' objectives we discussed in our previous paper: such schemas do not use alternatives,
express cardinality of each element and relax constraints over their order. Moving off such classification,
and after resuming the discussion about expressivity and scope of DNO schemas, we will present a
reduction algorithm to generate a DNO schema from any schema that is invariant with respect to the
descriptiveness of the constraints.

The analysis is divided in two main parts: a formal study of the conversion algorithm of XML DTDs,
based on grammars and language theory, and an informal discussion about XML-Schema and RelaxNG
schemas. Future version of this work will be applying formal techniques to these languages as well. The
paper is then organized as follows: section 2 discusses descriptive schemas and constraints relaxation on
that class of documents, section 3 refines our notion of descriptiveness and invariant conversion, sections
4 and 5 formalize grammars for XML DTDs and present our reduction algorithm; finally section 6 analyzes
XML-Schema and RelaxNG in order to extend our approach to other languages too.

§ Descriptive markup languages and patterns

Simplifying descriptive schemas
The analysis of descriptive markup languages is not new. Many researchers interrogate about the inherent
nature and purposes of these languages, by comparing them with prescriptive approaches. For instance,
[Qui96] focused on DTDs: a prescriptive DTD may be designed to create new material or to mark up
existing material, and prescribes a set of rules which all matching documents must follow; a descriptive
DTD is used to create an electronic version of material that already exists (of course, a descriptive model
may also be used to create new documents) and describes structures that exist, rather than forcing any
particular structure.

A very good perspective to study these approaches and figure out application areas for each of them is
investigating the concept of validation they differently implement. As outlined by Piez [Pie01] two classes
of validation can be identified, roughly corresponding to prescriptive and descriptive schemas: strict and
loose. The traditional way of conceiving validation is ”strict”, because validation is used as a ”go/non-go”
gauge to verify in advance whether or not a data set conforms to a set of requirements. The example
provided by Piez explains very well the role of such a validation: the publishing process can be likened
to an assembly line and validation is a control phase that prevents errors and makes the whole system
work. When a document fails validation, there is something wrong with it, something that has to be changed
in the document itself. Strict validation is useful (and sometimes necessary) as a means to split a complex
job into sub-activities, that can be accomplished by different actors with different skills and facilities.

Even if less frequent, an opposite perspective is alike interesting: using validation to describe documents
and to capture a posteriori structural information about a text. Piez defined such a process as a loose
validation. It might be important to trace those features of the text important to the author or to encoder,
rather than those constraints essential for subsequent operations over that text. Moreover it may happen
that some features of documents are still undefined when designing schemas, as well as some instances
(which should be considered valid) are still unknown. Thus, a descriptive schema is not something that
exists before an instance, as a set of rules to be followed; in a sense, it derives from instances, as an ex
post facto expression of what can be discovered from them. As a consequence, such a schema is not
composed by fine-grained declarations that capture variations and exceptions, but it is composed by
generic rules that capture the overall meaning of a set of documents.

A clear identification of contexts of use of schemas has (or, at least, should have) a great impact over their
design. In particular, we have noticed how descriptive schemas can be simplified by carefully taking into
account their real scope and objectives. Two examples, we also brought in 2005, help us in explaining
such simplification process (check our previous paper for some more examples and a deeper analysis):

Alternatives
Let us consider a possible either/or situation: for instance, in an address, a document designer might decide
that an address either has a P.O. Box or a street address. In a DTD like syntax, this could be rendered in
a rule such as:

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 2 Extreme Markup Languages 2007®

Figure 1: Expressing alternatives in a DTD-like syntax

<!ELEMENT address (name, (pobox | street), city, ZIP, state)>

In a prescriptive document factory, this rule effectively inhibits incorrect structures to be created, and
ensures homogeneity in the created documents. In a descriptive environment, on the other hand, there is
no homogeneity to be sought for documents (they exist already), but rather it is important that all existing
documents are marked up at best and without ambiguities.

Now two things may happen: if in the document set there is no example of a simultaneous presence of
P.O. Box and street address, then this is a constraint that has no practical effect on reality, one additional
check that was not needed. If, on the other hand, a document exists that has both a street address and a
P.O. Box, then the rule does not allow a correct markup, and forces the document editor to find a hack
around the constraints of the DTD.

A corresponding descriptive rule would therefore be:

Figure 2: Expressing alternatives with a descriptive rule

<!ELEMENT address (name, pobox?, street?, city, ZIP, state)>

where the alternative has been transformed into a sequence of optional elements. This rule has no effect
on the final markup, exposes exactly the same meanings for documents that naturally follow the stricter
rule, but allows for the exception in case one exists.

Alternatives do not capture additional semantics with respect to a sequence of optional elements, but a
priori exclude some situations to occur. Thus in a descriptive environment they are useless in the best
cases (where all occurrences naturally follow the alternation) or a nuisance and an obstacle if an exception
happens.

Mixed content models
Mixed content models are by definition used when describing semi-structured text flows that are part of
larger contexts. Paragraphs that have meaningful subparts inside are natural candidates for mixed content
models.

Each individual sub-element of a paragraph specifies some special meaning or style on the wrapped text.
For this reason, all text elements within a sub-element of a paragraph are also part of the paragraph. In
this view, it makes little sense that sub-elements of a mixed content paragraph is allowed to contain data
that is not part of the paragraph text flow, since this could be difficult to identify without precise advance
knowledge the meaning of the sub-element itself and its further subparts.

Thus the only reasonable forms of mixed content models should be:

Figure 3: Defining a mixed-content model to model paragraphs

<!ENTITY % inline "(#PCDATA | a | b | ... |
 z)*"> <!ELEMENT para %inline;> <!ELEMENT a
 %inline;> <!ELEMENT b %inline;> ... <!ELEMENT z
 %inline;>

or, at most, if we want to exclude further nesting inside sub-elements,

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 3

Figure 4: Defining a mixed-content model to model paragraphs, excluding further nesting inside sub-elements

<!ENTITY % inline "(#PCDATA | a | b | ... |
 z)*"> <!ELEMENT para %inline;> <!ELEMENT a
 (#PCDATA)> <!ELEMENT b (#PCDATA)> ... <!ELEMENT z
 (#PCDATA)>

This for is meant to specify that the content model of all elements of a mixed content are mixed content
themselves (or simple text in the simplest cases), and that a block element is the only mixed content element
whose content model list does not include itself (i.e., there is no para inside the inline entity).

Patterns for descriptive document structures
The main topic of the paper we presented at Extreme 2005 was a set of patterns that are enough for writing
any descriptive schemas. We provided there a quite exhaustive description of our patterns by focusing on
their features, applications and mutual relationships. We do not want to repeat here that analysis, but we
need to focus on some features relevant for conversion (and formal proof) we explain later. Table 1 shows
our patterns, defined by a very small set of objects and composition rules:

Table 1: Patterns

Pattern DTD syntax

Marker <!ELEMENT X EMPTY>
Atom <!ELEMENT X (#PCDATA)>
Block <!ELEMENT X (#PCDATA | E1 | ... | En | M1 | ... | Mn | Ax)*>
Inline <!ELEMENT E1 (#PCDATA | E1 | ... | En | M1 | ... | Mn | Ax)*>

Record <!ELEMENT X (E1?, E2?, ..., En?)>
Container <!ELEMENT X (E1 | E2 | ... | En)*>

Table <!ELEMENT X (E)*>

The first thing to notice is the introduction of a new pattern, called container, used to model all those
circumstances where diversified objects are repeated and collected together. The name emphasizes the
genericity of this pattern: a container, in fact, is an unordered set of repeatable and heterogeneous elements:

Figure 5: The container pattern

<!ENTITY % Blocks "(para | table | li)" > <!ELEMENT body
 %Blocks; > <!ELEMENT section %Blocks; > ...

As expected, the content-model of a container includes markers, atoms, blocks, records, tables and
containers themselves. Only raw text and inlines are excluded, because they should be wrapped within a
block. Containers are related to both records and tables of our model. On the one hand, they share the
classes of elements included in a record (blocks, inlines, records, etc.): what changes is only the
repeatability of those elements, but the order is not relevant in both cases. On the other hand, they are
related to tables for their repeatability. The only difference is that items of a container are heterogeneous,
while those within a table are homogeneous. We use two separated patterns just to emphasize the difference
between homogeneous and heterogeneous structures. Patterns in fact are meant to clearly distinguish the
structural role of the objects.

Actually we are discussing about the specialization of the pattern container into a hierarchical
container, which distinguished the title from its actual content (unordered set of repeatable elements).
However, this difference is not relevant here: what is important, is the presence of an object able to gather
and collect heterogeneous elements under the same logical wrapper.

Wrappers play a very important role in our model. They are specific elements used to gather uniform
information, to group elements, and to emphasize relationships among them. Basically they spread the

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 4 Extreme Markup Languages 2007®

information over the depth of the document in order to decrease the need for complex constructs, and
make explicit mutual connection among elements. For instance, every time a content model contains a
mixed presence of repeated elements and single ones (or alternatives), a new (wrapper) element can be
created to better model that scenario. It will substitute that ’wrong’ declaration fragment, inheriting the
content model. Consider for instance an element declaration <!ELEMENT X (A,(B|C))>. A new
element W (<!ELEMENT W (B|C)>) can be introduced and substituted in previous declaration, in order
to obtain a homogeneous declaration <!ELEMENT X (A,W)>. In turn, the declaration (<!ELEMENT W
(B|C)>) can be changed into (<!ELEMENT W (B?, C?)>), when alternatives are actually irrelevant
(i.e., descriptive scenarios). Note that the new definition does not impact the expressivity of the schema:
in particular, it does not change its descriptiveness since it correctly generalizes the meaning and structure
of the valid documents.

Another point is worth being remarked about patterns: specific rules are imposed over the class of objects
allowed in the content-model of each of them. For instance, an inline element can be contained only within
a block, a container cannot directly contain plain text, a record or a table cannot be contained in a block,
and so on. Table 2 shows these constraints (each row indicates elements allowed in the content-model of
each pattern).

Table 2: Composition rules over patterns

 EMPTY Text Marker Atom Block Inline Record Container Table
Marker X
Atom X
Block X X X X
Inline X X X X

Record X X X X X X
Container X X X X X X

Table X X X X X X

Although it seems a limitation, such strictness contributes to widen the expressiveness and the applicability
of patterns. By limiting the possible choices, the role played by each pattern is highly specialized and it
is possible to associate a single pattern to the users’ needs. For instance, preventing records within blocks
we prevent an uncontrolled mixing of structured and unstructured content, or preventing inlines out of
blocks we prevent incorrect locations for text fragments, or preventing tables within blocks we ensure the
distinction between block texts and complex data structures, and so on.

Wrappers can be use to "by-pass” all those situations where a constraint among patterns is violated.
Consider for instance, a container element declared as <!ELEMENT C (A|B)*>, when B is an inline. A
new block element, the wrapper W (<!ELEMENT W (#PCDATA|B)*>) can be created and the C
definition can be changed in <!ELEMENT C (A|W)*>. All changes introduced by wrappers are then
targeted to "clean” (or homogenize) documents structures.

§ Invariant conversion among descriptive schemas

Refining the notion of descriptiveness
The choice between descriptive and prescriptive models primarily depends on the relation between the
process of actual writing a document and the process of encoding it. Descriptive models reflect the fact
that authors have worked before the creation of the schema. Then, designers are in charge of
accommodating variations, exceptions and generalize the features of a (possibly large) set of documents.
Still, such generalization is not a pre-defined and univocal process. Designers in fact may want to relax
some constraints, omit or reformulate some definitions, express information in a different way according
to different criteria and preferences. What we presented in the previous section is only one of the possible
solutions towards descriptiveness.

A deeper analysis leads us to identify 6 different subclasses of descriptive approaches, which we
summarize in the following paragraphs. We call them levels of descriptiveness. Note also that our
definition, although refer to DTDs, can be applied to any other validation language. What matter are the
objectives and principles behind each paradigm:

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 5

Prescriptive (PRE) a prescriptive DTD imposes a set of rules which all matching documents must
follow. Prevent errors in a production chain, based on strict validation.

Descriptive No
Alternatives (DNA)

a descriptive DTD without alternatives do not allow users to force a choice
between two (or more elements). The basic idea is that alternatives are meant
to inhibit incorrect structures, but they are not required when all documents
already exist and the DTD is used to describe all those documents (including
variations and exceptions otherwise unpredicted by a strict/prescriptive
DTD).

Descriptive no cardinality
(DNC)

a descriptive DTD without alternative can be further generalized by relaxing
constraints over the cardinality of each single element. The idea is that by
forcing cardinalities some documents could be considered invalid, even if
they belong to the same class. Such validation is not meant to prevent errors,
but to describe existing resources.

Descriptive No Order
(DNO)

constraints over the order can be relaxed as well. Imposing an order is
something extremely useful when invalid documents obstruct a complex
process, but it makes much less sense when the goal is identifying
subcomponents. A descriptive document is not meant to say where each
object is located (a presentation layer can change that property), but which
are the objects contained in the document itself.

Super Descriptive (SD) relaxing both constraints over cardinality and order, besides alternatives,
designers can create abstract DTDa which consider any object as a sequence
of repeatable and optional elements (as in the example). Apparently vague,
these DTDs are meant to only define the set of objects of the documents.

(Un)Descriptive (UD) relaxing any constraint designers could say that anything includes anything.
Not useful in practice, those DTDs are only mentioned to complete our
spectrum.

Table 3 shows a very simple DTD declaration, transformed according to all these models.

Table 3: Descriptiveness levels example

Descriptiveness level Content Model

Prescriptive (PRE) <!ELEMENT X (A, (B | C), D*)>
Descriptive No Alternatives (DNA) <ELEMENT X (A, (B?, C?), D*)>
Descriptive No Cardinality (DNC) <ELEMENT X (A*, (B*, C*), D*)>

Descriptive No Order (DNO) <ELEMENT X (A & (B? & C?) & D*)>
Super Descriptive (SD) <ELEMENT X (A | (B | C) | D)* >
(Un)Descriptive (UD) Any

Introducing the notion of Invariant Conversion
Our previous analysis, based on the paper we presented in 2005 [DIGV05], implicitly identified the DNO
paradigm (with some important variations) as a good solution to design generic schemas for document
structures. Although we did not explicitly mention DNO, in fact, we studied situations where such
descriptiveness (relaxing alternatives and order, but maintaining cardinality) is enough to express
everything users need. In the same paper, we proposed some patterns and concluded that most of those
descriptive situations can be modelled by adopting these and only these patterns. The goal of this work is
proving that such pattern-based approach is complete according to a given notion of equivalence.

Our notion of equivalence is strictly related to the idea of 'levels of descriptiveness'. In particular, we
exploit the strong separation between competencies and requirements implemented at each level. As stated
before, in fact, choosing a level of descriptiveness depends on the context of use. Each level implies a set
of constraints which can be relaxed, a set of properties which are interesting to be maintained, and a set
of simplifications which can be made without loosing expressivity.

Another point is very important about these levels: their partial sorting. The same table we used to present
them reflects that feature: levels embody increasing grades of generalization or, in reverse order,

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 6 Extreme Markup Languages 2007®

decreasing levels of prescriptiveness. The more constraints and impositions are relaxed, the more a higher
level of the hierarchy is involved. Thus, starting from the lowest PRE level (where concrete and specific
rules impose strong constraints over documents), our classification goes up to DNA (which relaxes
constraints over alternatives) which, in turn, goes up to DNC and DNO. In a sense, they can be considered
at the same 'meta-level' since they both relax constraints on a single dimension by keeping unchanged the
other one. By merging these approaches, we obtain schemas at SD level, up to (Un)Descriptive (UD) one,
which accepts any document.

On the basis of such considerations, the term fully equivalent at a given level indicates that the information
carried by two schemas is exactly the same under the constraints implied by that level of
descriptiveness. To excess, all schemas can be considered equivalent at the higher level (UD) since no
constraint actually exists. Similarly, at DNO level no matter whether or not a schema expresses
alternatives, as well as at DNC level it is not relevant to count the number of the elements. All these
constraints are relevant at lower levels (down to the PRE level, where no rules can be relaxed) but can be
neglected when dealing with schemas from a higher perspective.

We then define an invariant schema conversion to a given level D as a "transformation from a whichever
input schema A into a specific output schema B, which respects constraints and rules imposed by D level
and preserves D descriptiveness of schema A in schema B".

An example of invariant conversion at DNO level is shown below:

<!ELEMENT bibliography (info, (title, subtitle?)?, (mixedcontent |
entries))) >
<!ELEMENT bibliography (info & title? & subtitle? & mixedcontent? &
entries?) >
Note that an invariant conversion makes sense only when associated to a specific level of descriptiveness.
A converted schema does not express exactly the same information of the original one, rather the same
information relevant for that context. Consider for instance the example in table 3: the schema at DNO
level cannot be used to prevent the co-presence of the B and C elements (as the prescriptive one) but give
readers an exhaustive description of the elements contained in X, if their position and co-existence are not
relevant.

The above mentioned discussion about motivations and use-cases for using DNO schemas can now be
applied to DNO invariant conversion. By converting schemas into DNO equivalent ones, we obtain
instances which better fit descriptive scenarios. Our starting claim (about the completeness of our patterns
according to a notion of equivalence) can be now reformulated: we want to prove that for any schema
there exists an invariant conversion at DNO level which transforms it into a schema exclusively based on
our patterns. We want to state that any schema can be generalized (and normalized) into a new one which
'descriptively validates' the same set of documents and only uses our patterns: the point is that all
simplifications and reductions on the input schema do not impact constraints and rules imposed at DNO
level. From now on, we will use the term 'invariant conversion' to indicate such class of reductions,
implying they hold at DNO level.

We applied invariant conversions to some elements' declarations of well-known markup languages, in
order to produce their pattern-based 'relatives'. Once again, the point is not raising objections on those
original declarations, but showing how they are simplified in a DNO context. Consider for instance the
glosslist element of DocBook (version 4.5) whose content-model is shown in the first line of fig. 6:

Figure 6: The glosslist declaration in DocBook 4.5 and its pattern-based reformulation

<!ELEMENT glosslist (blockinfo?,
 (title,titleabbrev?)?, glossentry+)> <!ELEMENT glosslist (blockinfo?,
 title?, titleabbrev?, glossentry+)> <!ELEMENT glosslist (blockinfo?,
 title?, titleabbrev?, glossentries?)> <!ELEMENT glossentries
 (glossentry+)>

The operator '?' after the sequence title and titleabbrev, which is in turn optional, sounds quite
unnatural: why do designers need to repeat it twice on the titleabbrev element? The reason is that a
titleabbrev makes no sense without a title, and designers wanted to prevent the existence of an isolated

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 7

titleabbrev. Although legitimate in a prescriptive environment, such a declaration can be substituted
by a more general one in a descriptive scenario. The second declaration in fig. 6 validates also a glossary
with only an abbreviated title but captures the same information at DNO level, that is the existence of title
and abbreviated title for a glossary.

The presence of a sequence (of elements glossentry) mixed with non-repeated elements
(bookinfo and titles) also conflicts with our pattern-based vision. However, it is evident that the
glossentry elements are logically contained in a wrapper, even if that wrapper were not explicitly used
in the document itself. The introduction of a virtual element, say glossentries, makes explicit and
processable the uniformity among glossentrys and distinguishes them from the rest of the
glosslist content-model. By paying some extra verbosity, the resulting schema clearly highlights the
overall structure of a list of entries in a glossary.

The case of glosslist is not isolated. Similar considerations can be repeated about any DTD (or better,
any schema written in any language), whenever declarations are designed for prescriptive purposes and
generalized into descriptive ones. A similar example can also be found in the Extreme Markup Conference
DTD, by looking at the element deflist, which encodes a two-column list of definitions. The
corresponding declaration, shown in fig. 7, can be transformed into a pattern-based one by adding a virtual
wrapper for the item elements (which plays the same role of the previous glossentries) and by
relaxing constraints over the co-presence of a term name and explanation. Although an explanation without
a term makes a little sense, and should be prevented when creating new documents, the (second and
descriptive) declaration in fig. 7, which considers an heading as a record of both optional elements
term.heading and def.heading, equally expresses the basic information of a definition list.

Figure 7: The deflist declaration in the Extreme Markup DTD and its pattern-based reformulation

<!ELEMENT deflist (title?, (term.heading,
 def.heading?)?, def.item+)> <!ELEMENT deflist (title?,term.heading?,
 def.heading?, def.items?)> <!ELEMENT def.items (def.item+)>

Prescriptive constraints can also be relaxed on the TEILite Specifications, keeping invariant declarations
at DNO level. Consider the element publicationStmt, which groups information about the publication
and distribution of an encoded text. Its content model, shown in fig. 8, is meant to define two different
forms of statement, which cannot be mixed each other. A publicationStmt is a choice between two
sequences of some common information (captured by the %m.Incl; entity) preceded by paragraphs or
other publication-related elements. The complex structure of this content-model derives from the need of
validating homogeneous sequences, which exclusively start with paragraphs or different elements. A
descriptive declaration does not need to prevent such co-existence but aims at indicating which elements
appear and how many times. By also transforming alternatives into records of optional elements, according
to the theory discussed in our previous paper, this declaration could even be converted in the very general
schema shown in fig. 8. It could be further improved by introducing wrappers, which make explicit the
relationship among uniform and repeatable elements.

Figure 8: The publicationStmt declaration in TEILite and its pattern-based reformulation

<!ELEMENT publicationStmt ((p, (%m.Incl;)*)+ | (
 (publisher | distributor | authority | pubPlace | address| idno | availability | date),
 (%m.Incl;)*)+)>
<!ELEMENT publicationStmt ((p?, publisher?,
 distributor?, authority?, pubPlace?, address?,idno?, availability?, date?),
 (%m.Incl;)*)+

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 8 Extreme Markup Languages 2007®

§ Invariant conversion towards pattern-based documents: a formal
analysis

Grammars and formal languages
In order to deeply analyze patterns we performed a formal analysis, based on language theory. In formal
language theory, a language is defined as a set of words built over a set of terminal symbols, and grammars
define rules to combine together terminals through productions. Our idea is to derive properties of
validation languages (whether pattern-based or not) by analyzing the grammars which produce these
languages.

We will present a formal study of invariant conversions for DTDs. We will show that, for any DTD, it
exists an invariant conversion (once again, at DNO level) which transforms it into a pattern-based one.

We chose DTDs because they are simpler, easier to be read, and more direct. The reverse of the medal is
the fact that DTDs are less expressive than other schema languages, and many schemas (for instance, all
those written in XML-Schema [TBMM01] or RelaxNG [CM01]) seem to be cut off from our discussion.

In this connection, we will later discuss differences between DTDs, XML-Schema and RelaxNG in terms
of descriptiveness and invariant conversion. We will conclude that advanced features of XML-Schema
and RelaxNG do not impact the descriptiveness of a schema, and invariant conversion is valid for those
languages as well. A proof on DTDs is then meant to prove the completeness and soundness of a general
conversion approach, independent from actual schema languages.

An empirical and quite surprising result is also interesting on this point: [BMNS05] discovered that the
85% of the existing XML-Schemas are equivalent to DTDs. Although they took random schemas which
are probably not representative for all schemas currently used (one of the reason, for instance, is the fact
that many tools automatically generate fairly elaborate schemas) they pointed out a very interesting trend,
i.e. an undeniable strength of DTDs in the everyday life. Even narrowing the analysis on the only DTDs,
would be a partial but interesting result.

Our proof consists of three main phases: (i) introducing a grammar which produces all the possible DTDs,
(ii) introducing a grammar which produce all the DTDs based on our patterns (described in our previous
work [DIGV05]) and (iii) presenting a reduction algorithm which applies an invariant conversion on each
production of the grammars. In the following subsections, we introduce the general grammar G for DTDs
and we propose our grammar P able to produce all the DTDs which use only our patterns, postponing the
comparison between related languages to section 5.

The general grammar G
The general grammar G, provided by the W3C [BPSMM00], produces all the possible DTDs. To make it
easier, we extracted some rules and worked only on them. In particular, we are interested in the element
type declarations (summarized in figure 9) since they define the overall structure of a document.

Figure 9: General grammar G

[45] elementdecl ::= '<!ELEMENT' S Name S
 contentspec S? '>' [46] contentspec ::= 'EMPTY' | 'ANY' | Mixed | children [51]
 Mixed ::= '(' S? '#PCDATA' (S? '|' S? Name)* S? ')*' | '(' S? '#PCDATA' S? ')' [47]
 children ::= (choice | seq) ('?' | '*' | '+')? [48] cp ::= (Name | choice | seq) (
 '?' | '*' | '+')? [49] choice ::= '(' S? cp (S? '|' S? cp)+ S? ')' [50] seq ::= '(' S?
 cp (S? ',' S? cp)* S? ')'

Our grammar P
The grammar P aims at expressing in a formal way constraints and composition rules over pattern-based
documents. The production rules of that grammar are summarized in figure 10. Productions [p01-p08] are
used to declare the seven different patterns, while the remaining ones are introduced to specify their content
models.

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 9

Figure 10: Our pattern-based grammar P

 [p01] elementdecl ::= markerelementdecl | atomelementdecl
 | blockelementdecl | inlineelementdecl | recordelementdecl | containerelementdecl |
 tableelementdecl [p02] markerelementdecl ::= '<!ELEMENT' S MarkerName S
 markercontentspec S? '>' [p03] atomelementdecl ::= '<!ELEMENT' S AtomName
 S atomcontentspec S? '>' [p04] blockelementdecl ::= '<!ELEMENT' S
 BlockName S blockcontentspec S? '>' [p05] inlineelementdecl ::=
 '<!ELEMENT' S InlineName S inlinecontentspec S? '>' [p06]
 recordelementdecl ::= '<!ELEMENT' S RecordName S recordcontentspec S? '>'
 [p07] containerelementdecl ::= '<!ELEMENT' S ContainerName S containercontentspec
 S? '>' [p08] tableelementdecl ::= '<!ELEMENT' S TableName S
 tablecontentspec S? '>' [p09] markercontentspec ::= 'EMPTY' [p10] atomcontentspec
 ::= '(' S? '#PCDATA' S?')' [p11] blockcontentspec ::= maicontentspec [p12]
 inlinecontentspec ::= maicontentspec [p13] maicontentspec ::= '(' S? '#PCDATA' (S? '|'
 S? maiName S?)+ S? ')*' [p14] recordcontentspec ::= '(' S? mabrctName '?'? (S?
 &' S? mabrctName '?'? S?)* S? ')' [p15] containercontentspec ::= '(' S?
 mabrctName (S? '|' S? mabrctName S?)* S? ')*' [p16] tablecontentspec ::= '(' S?
 mabrctName S? ')*' [p17] maiName ::= MarkerName | AtomName | InlineName [p18] mabrctName
 ::= MarkerName | AtomName | BlockName | RecordName | ContainerName | TableName

We perform some initial simplifications to make simpler and clearer the analysis: for instance, we omit
attributes declarations, and we do not consider some unusual declarations as (#PCDATA)* (that can be
substituted with the equivalent (#PCDATA)). Moreover, we do not consider the terminal symbol '+' both
for shortness and both because it could be associated to the terminal '*' from a descriptive perspective.

Another point is worth being explained: we introduce the terminal symbol '&', that in SGML syntax means
that all elements must occur in any order, in order to better formalize the DNO model.

§ Invariant conversion between DTDs
Our proof is concluded by a point-to-point comparison between the languages generated by the two
grammars, G e P. The goal is showing the existence of an invariant conversion at DNO level, for any DTD
generated by the grammar G into a DTD generated from P. This property can be formally split in two sub-
propositions:

Proposition 1 Let L(P) and L(G) be the languages generated respectively by our grammar P and the
general grammar G. L(P) is the set of all possible pattern based DTDs, while L(G) is the set of all possible
DTDs.
L (P) ⊂ L (G)
Proposition 2 Let L(G) and L(P) be as above.
∀ d ∈ L (G)∃ p ∈ L (P)

| for some reduction algorithm r: L(G) → L(P), d→
r
p and p and d are equally descriptive at DNO level.

The symbol →
r

 indicates that d is reduced to p applying the function r.
Proof. We want to demonstrate the existence, for any DTD, producible from G, of a pattern-based DTD,
producible from P, which is equally descriptive at DNO level. To do it, we propose a constructive
demonstration: we present a reduction algorithm, which applied to a DTD, generates a pattern-based DTD,
equally descriptive at DNO level.

The algorithm for the transformation of a generic DTD in a pattern-based DTD consists of two phases,
called element types detection and refinement: the first phase shows how each element X, generated by
G, can be mapped in an element X' generated by P, and, in this way, associated at one of the seven possible
patterns. The demonstration analyzes, in exhaustive way, the derivations generated by productions [46-51]
of grammar G and matches them with equivalent (for derivations) productions of grammar P [01-18]; the
second phase performs a cross check on identified patterns in order to assure that all pattern constraints
(see Table 2) are respected; any violation is corrected applying a set of four reduction rules.

Element types detection. Now we apply an exhaustive analysis, deriving the language generated by
grammar G and identifying the correspondence with productions and language generated by grammar P:

by applying productions [45] and successively [46], if we derive in G contentspec ⇒ 'EMPTY',
equivalently we apply productions [p01], [p02] and [p09] in P and we derive markercontentspec ⇒
'EMPTY'. In this case the element X is associated to a Marker.

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 10 Extreme Markup Languages 2007®

By applying productions [45], [46] and [51], if we derive contentspec ⇒ Mixed ⇒ (#PCDATA),
equivalently we apply productions [p01], [p03] and [p10] in P and we derive atomcontentspec ⇒
(#PCDATA). In this case the element X is associated to an Atom.

By applying productions [45], [46] and [51], if we derive contentspec ⇒ Mixed ⇒ (#PCDATA | Name
| ... | Name)*, then let n = Name | ... | Name, or in more general form n = N1 | ... | Nm, with m ≥ 0. If n =

Ø, then contentspec ⇒ * (#PCDATA)* . Relaxing constraints, we reduce (#PCDATA)* →
r

 (#PCDATA)
(case treated before). If n ≠ Ø, then contentspec ⇒ Mixed ⇒ (#PCDATA | N1 | ... | Nm)* . In this
situation, if ∃ i ∈ {1, ..., m} ∋ ' X = Ni (that is, X includes it self in its content model), X is associated
to an Inline; while if n ≠ Ø and ∄ i ∋' X = Ni, with i = 1, ..., m, X is associated to a Block. In the first
case, we apply in grammar P productions p[01], [p05], [p12], [p13] and [p17], while in the second case
productions [p01], [p04], [p11], [p13] and [p17]. Since productions [11], [12] and [17] require that ∀ i,
i=1, ..., m, Ni ∈ MAI = {MarkerName, AtomName, InlineName}, if this constraint is not respected, in
the refinement phase appropriate reduction rules must be applied.

By applying productions [45], [46], [47] and [49], if we derive contentspec ⇒ children ⇒ choice ⇒

(cp | cp | ... | cp), we relax constraints and we associated to X a Record, reducing (cp | cp | ... | cp) →
r

 (cp?
& cp? & ... & cp?). In this case, the equivalent productions in grammar P are [p01], [p06], [p14] and [p18].
The constraint is ∀ cp, cp ∈ MABRCT = {MarkerName, AtomName, BlockName, RecordName,
ContainerName, TableName}. As before, if this constraint is violated, appropriate reduction rules must
be applied in the refinement phase.

By applying productions [45], [46], [47] and [49], if we derive: contentspec ⇒ children ⇒ choice*
⇒ (cp | cp | ... | cp)* X is associated to a Container (applying equivalent productions [p01], [p07], [p15]

and [p18]. In this case, if the constraint ∀ cp, cp ∈ MABRCT = {MarkerName, AtomName, BlockName,
RecordName, ContainerName, TableName}, is violated, in refinement phase, appropriate reduction rules
must be applied.

By applying productions [45], [46], [47] and [49], if we derive contentspec ⇒ children ⇒ choice+, then

we relax constraints, reducing choice+ →
r

 choice* (case treated before); if we derive contentspec ⇒

children ⇒ choice?, we relax constraints, reducing choice? →
r

 (cp? & cp? & ... & cp?) (case treated
before).

By applying productions [45], [46], [47] and [50], if we derive: contentspec ⇒ children ⇒ seq ⇒ (cp,
cp, ..., cp), then we relax constraints, reducing (cp, cp, ..., cp) to (cp & cp & ... & cp). In this situation X
is associated to a Record (applying equivalent productions [p01], [p06], [p14] and p[18]).

By applying productions [45], [46], [47] and [50], if we derive contentspec ⇒ children ⇒ seq* ⇒
(cp, cp, ..., cp)*, equivalently we apply productions [p01], [p08], [p16] and [p18] in grammar P and X is
associated to a Table and a record wrapper is introduced for cp, ..., cp.

Finally, by applying productions [46], [47] and [50], if we derive contentspec ⇒ children ⇒ seq?

⇒ (cp, ..., cp)?, we relax constraints, reducing (cp, ..., cp)? →
r

 (cp? & ... & cp?) (case treated before);
while, if we derive contentspec ⇒ children ⇒ seq+ ⇒ (cp, ..., cp)+, then we relax constraints, reducing

(cp, ..., cp)+ →
r

 (cp, ..., cp)* (case treated before).

In previous analysis, we have we have left out the derivation, obtained by applying productions [45] and
[46]: contentspec ⇒ 'ANY'; the reason is that, in practice, this approach is rarely used because it allows
too much freedom, and therefore undermines the benefits that derive from defining document structures.
Only for the sake of completeness, we mention it and we associate to it a Container wrapper, that can
contain, directly or indirectly (by means other wrappers), any other element.

We note that, during this phase, the presence of 'cp' claims, in many situations, the introduction of
appropriate wrappers.

The result of this phase is the reduction of each element to one (and only one) of the seven patterns, or,
in alternative, is the introduction of a wrapper, which assumes the type of a given pattern. As consequence
of this consideration, in order to complete our reduction, we need of checking that all elements respect
inclusion constraints synthesized in Table 2. This is performed by next refinement phase.

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 11

Refinement. The second phase performs a cross check between elements to assure that all constraints are
observed. Table 4 marks with an X only permitted combinations in elements' declarations, while marks
with (x), x = 0, ..., 4, the situations in which a reduction rule must be applied.

Table 4: Composition rules over patterns and reductions

 EMPTY Text Marker Atom Block Inline Record Container Table
Marker X (0) (0) (0) (0) (0) (0) (0) (0)
Atom (0) X (0) (0) (0) (0) (0) (0) (0)
Block (0) X X X (1) X (3) (3) (3)
Inline (0) X X X (1) X (4) (4) (4)

Record (0) (0) X X X (2) X X X
Container (0) (0) X X X (2) X X X

Table (0) (0) X X X (2) X X X

For each element declaration one must checked that all contained element in the content model don't violate
the constraints expressed in Table 2. Every time an element content model brakes a rule (i.e. an inline
declaration contains a block in its content model) a specified reduction rule has to be applied according
to the previous table (in the previous example the (1) reduction rule has to be applied). Some times a
reduction rule can change the type classification of an element implying a complete recheck of all element
declarations, making this algorithm iterative. We note that, during reduction process, we relax some
constraints, prescribed in grammar G; in this way, the set of documents, accepted by the pattern-based
DTDs, generated by P, is at least large as the set of documents generated by the original DTD. In the
following subsections each reduction rule will be specified.

Reduction rule (0) All cases marked with this reduction rule will never happen because the
definition of the element excludes those cases. For example if an element has
been recognized as Marker it is impossible that the declaration of the element
contains other elements than the keyword 'EMPTY'.

Reduction rule (1) In the case that a block element is found in the declaration of other blocks or
inline then a two-steps reduction has to be applied:

• the block element that is found inside other element will be no longer
considered as a block but as an inline;

• having changed the type classification of an element all the element
declarations have to be re-checked with the new type classification.

Reduction rule (2) In the case that an inline element appears inside a record, a container or a
table element one must created a new block element that will substitute the
inline element in all the wrong positions; the content model of the new block
element will have to contain only the inline element. In this case, a re-check
is not needed.

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 12 Extreme Markup Languages 2007®

Reduction rule (3) In the case that a record, a container or a table element appear in content
model of a block element, a three steps reduction has to be applied:

• remove the offending-element from the block-element
containing it;

• create a new container-wrapper with content model of type (block-
element | offending-element)*;

• substitute everywhere the block-element with the new container-
wrapper.

In this case it's not needed a re-check.

Reduction rule (4) In the case that a record, a container or a table element appear in content
model of an inline element than a three steps reduction has to be applied:

• remove the offending-element(s) from the inline-
element containing it;

• push the removed offending-element(s) in all the parent block
elements that contain as son or descendant the inline-element;

• having modified the content model of some elements, all the element
declarations have to be re-checked.

This concludes the demonstration. CVD.

§ Extending the notion of invariant conversion: XML-Schema and
RelaxNG

DTDs are widely used among designers because of their simplicity and plainness. Surprisingly, although
more powerful validation languages exist, most of the existing schemas are still equivalent to DTDs
[BMNS05]. Then, an invariant conversion among DTDs is a partial but very interesting result of our
research.

The next step will be extending our approach to XML-Schema and RelaxNG. We plan to analyze them
by exploiting language theory as well. A point is very important: our goal is not evaluating their
expressiveness (many authoritative analysis exist, based on formal [MLM00] or informal [LDWCW00]
[JR01] approaches) but their "descriptiveness". In particular, we want to prove that the reduction algorithm
proposed in the previous section can be alike applied to any schema written in XML-Schema and RelaxNG.

We then need to verify how much each new feature of these languages impacts the descriptiveness. Note
that XML-Schema and RelaxNG provide users much powerful functionalities, but most of them are not
directly related to the matter of this paper, i.e. the (structured) content models of descriptive schemas.
Then, the analysis can be focused only on some relevant aspects.

In [LDWCW00] Lee and Chu presented a comparative analysis of six schema languages, including DTDs
and XML-Schema. We investigated each dimension proposed by the authors, in relation to descriptiveness
and our patterns, and extended their analysis to RelaxNG. This section sketches our results and discusses
how both XML-Schema and RelaxNG do not extend the "descriptiveness" of DTDs. As a consequence,
our pattern-based approach can be extended to these languages as well.

Lee and Chu classified validation languages' features in 7 categories:

Schema

The features related to the overall organization, modularization and syntax do not impact the
descriptiveness, since they do not cover definitions of content-models. The fact that XML-Schema and
RelaxNG documents are written in XML, the fact that they are namespace-aware and the fact that they
provide powerful mechanisms to include/import external schemas does not extend the set of choices and
constructs already available in DTDs content-models.

Datatype

XML datatype can be classified in two types: simple and complex. Simple types (the only discussed in
the "datatype" section of the original survey) do not impact structured and mixed content models, but

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 13

allow designers to better define the text content of elements and attributes. Built-in types, user-defined
types, modifiable facets give designers a more powerful control over atomic objects. In a descriptive
scenario however they can all be generalized as strings ((#PCDATA)).

Note that RelaxNG provides a more flexible solution than XML-Schema, since it allows users to import
and reuse any existing datatype set (and natively supports XML-Schema types). Even there customized
and extensible datatype sets do not impact structured content models.

Attribute

XML-Schema and RelaxNG empower the management/validation of attributes. In particular, both of them
allow users to associate simple types to an attribute, and overcome CDATA-related limitations of the
DTDs. Moreover, RelaxNG makes possible choices among attributes, some co-constraints over their
content, and so on. Although the relation between content-models and attributes is very interesting
(traditional discussion about attribute/element trade offs can be found in [CR02]), attributes are
temporarily out of the scope of this research. They in fact do not directly change structured and mixed
content models.

Element

As expected, elements play a central role in our analysis. Lee and Chu identified seven aspects of the
elements' management. Some of them are irrelevant for our discussion since they do not improve content-
models expressiveness, like the presence of default values. Others were not discussed because supported
by all the languages, like the presence of ordered sequence and choices among elements, or by none of
them, like the open model (implemented for instance in Schematron [Jel05]). Other dimensions are indeed
very important and will be discussed below:

1. content-model: all the schema languages we are analyzing support the same set of content-models:
empty, text, element, or mixed. The mixed content model is particularly interesting since changes
from DTDs to XML-Schema and RelaxNG (DTDs have only a type of mixed content model
((#PCDATA | A | B)*), while Schema and RelaxNG give users more control over the position
and mutual relations among in-lines). In a descriptive environment, however, designers do not need
to express constraints and rules over the position of the in-line elements. Any specific mixed content-
model can be then transformed into a general and unordered declaration. In RelaxNG things are
simpler, since the text is a <rng:text> element, which can be used as any other element. Even
there any prescriptive declaration can be generalized in a XML DTD-like mixed content model.

2. unordered-sequence: the SGML & operator has been removed in XML-DTDs, for the sake of
validation disambiguity. XML-Schema and RelaxNG restored that operator introducing
<xs:all> and <rng:interleave>. Since our pattern-based model directly uses the unordered
sequences (in the records), these operators do not raise issues. Actually, a remark is worth for
RelaxNG: the operator <rng:interleave> has a more powerful interleaving semantics.
Consider for instance A & B*. Expressed in RelaxNG, it matches any interleaving of a sequence
containing a single A element and a sequence containing zero or more B elements; it thus allows
the A element to occur anywhere, including between two B elements. Being more general and
validating a larger set of documents, such a declaration is in line with our descriptive intent.

3. min/max occurrences: Both XML-Schema and RelaxNG allow designers to precisely define the
minimum and maximum number of occurrences of any element. Such control, particularly useful
in a prescriptive environment, is not needed in a descriptive one where users are interesting in
which elements appear, more than where and how many times. Similar declarations can be then
transformed into DTD-like declarations using the '?' and '*' operators.

Inheritance

XML-Schema gives great importance to simple and complex types, and provides users many features
from object-oriented programming. In particular, types can be derived by restriction and extension. On
the contrary, RelaxNG does not provide explicit support for type derivation. Since simple datatyping is
not relevant here, the derivation of simple types is not interesting as well. Some remarks are indeed useful
about derivation over complex types. XML-Schema allows designers to extend complex types by adding
elements and attributes only at the end of a content model: any extended type can be then handled as a
sequence of elements or as any other content-model enriched with attributes. Both these situations have
already been handled in our analysis and pattern-based approach. Derivation for restriction, on the

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 14 Extreme Markup Languages 2007®

contrary, does not impact descriptiveness since users can design loose definitions and ignore prescriptive
restrictions.

Being Unique Key

The simple ID/IDREF model of DTDs has been improved by XML-Schema and RelaxNG. While XML-
Schema specifications directly provide powerful mechanisms to guarantee uniqueness of IDs, elements
and attributes, RelaxNG moves issues related to the keys' uniqueness in a different standard (called
RelaxNG Compatibility [CJMM01]). Identifiers do not impact content models, but the text content of
specific attributes. As a consequence, they can be neglected in our analysis of LLC conversion.

Miscellaneous

The residual class proposed by Lee and Chu addressed other aspects which do not impact descriptiveness
and invariant conversions. First of all, they also discussed some features not relevant because they are
unsupported either by XML-Schema (and DTDs) or by RelaxNG, like the dynamic constraints (which
can be turned off and on, upon specific conditions) or elements/attributes versioning (which allows authors
to define different values of the same object in different versions of the same schema). Second, they
included aspects related to description and documentation, like the possibility of adding annotations and
documentation, as well as embedding HTML code or producing self-describing specifications. All these
features are variably supported by XML-Schema and RelaxNG but do not change the expressiveness of
the elements' declarations.

All these considerations are summarized in table 5, derived from the analysis of Lee and Chu. The table
shows a fine-grained analysis of the features of DTDs, XML-Schema and RelaxNG and focused on their
relation with descriptiveness and our pattern-based normalization. Future revisions of this work will
provide much more details about each feature, and a formal analysis of its impact on invariant conversion.

Table 5: DTDs, XML-Schema and RelaxNG features analysis

Features DTD
1.0

XML
Schema
1.0

RelaxNG LLC XML-Schema LLC RelaxNG

Schema
syntax in xml No Yes Yes norelevance Syntactical differences do not change

expressiveness.
namespace No Yes Yes norelevance Namespaces do not impact content-models
include No Yes Yes norelevance Inclusions and imports do not impact

content-models
import No Yes Yes norelevance Inclusions and imports do not impact

content-models
Datatype

built-in type 10 37 any relevance Simple types do
not impact structured
content-models, and can be
reduced into a CDATA in a
descriptive environment.

Valid for RelaxNG as well
user-defined
type

No Yes Yes

domain
constraint

No Yes Yes

null No Yes Yes
extensibility No No Yes RELAX NG is not tied to a

single set of datatypes.
However new simple types
do not change the
structured content models.

Attribute
default value Yes Yes Yes noanalysis Our analysis

does not cover attributes and
Valid for RelaxNG as well

choice No No Yes Choice between attributes
is an interesting extra-

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 15

their relations with content
models.

feature of RelaxNG, not
relevant here.

optional vs.
required

Yes Yes Yes Valid for RelaxNG as well

domain
constraint

Partial Yes Yes

conditional
definition

No No Partial

Element
default value No Partial Partial norelevance Default values allow designers to pre-define

types and content-models, but do not change their
expressiveness.

content model Yes Yes Yes relevance Both schema
languages support empty,
text, element, or mixed
content models. DTDs have
only a type of mixed content
model ((#PCDATA | A |
B)*), while XML-Schema
provides a more powerful
mechanism. In a descriptive
environment, designers do
not need to express
constraints and rules over
the position of the in-line
elements. Any XML-
Schema mixed content-
model can be then
transformed into a general
DTD-like block or in-line.

Valid for RelaxNG as well.
In RelaxNG #PCDATA is a
<rng:text> element and
can appear in any position
of a mixed content-model.
The XML DTD-like
declaration "generalizes"
all these scenarios.

ordered
sequence

Yes Yes Yes nodifference

unordered
sequence

No Yes Yes relevance Patterns use the
SGML & operator,
equivalent to the XML-
Schema <xs:all>. XML-
Schema unordered
sequences are then directly
included in our model.

In RELAX NG, the
corresponding operator
(<rng:interleave>)
has a more powerful
interleaving semantics.
RelaxNG declarations are
more general and validate
a larger set of documents.
No problem in terms of
descriptiveness.

choice Yes Yes Yes nodifference Alternatives are less interesting and useful
in a descriptive scenario.

min & max
occurrence

Partial Yes Yes relevance In a descriptive
environment authors do not
need to precisely specify
how many times an element
can appear within another
one. XML-Schema
declarations about
occurrences can be then
transformed into DTD-like
declarations using the '?' and
'*' operators.

Valid for RelaxNG as well.

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 16 Extreme Markup Languages 2007®

open model No No No nodifference
conditional
definition

No No Partial nodifference relevance Co-constraints
importance in a descriptive
context is very low. More
than preventing erroneous
instances of documents, in
fact, designers aims at
describing the general
structure of a large set of
documents.

Inheritance
simple type by
extension

No No Yes relevance Simple types do not impact structured content-
models, and can be reduced into a CDATA in a
descriptive environment.simple type by

restriction
No Yes Yes

complex type by
extension

No Yes No relevance Derived complex
type adds elements at the
end of a content-model and
can be then handling as a
stand-alone complex type.

nodifference

complex type by
restriction

No Yes No relevance Restriction is not
relevant in a descriptive
environment, where
designers can use general
and loose definitions

nodifference

Being unique or key
uniqueness for
attribute

Yes Yes --- norelevance Uniqueness of
IDs, elements and attributes
do not impact contet-models
and documents' structures

Moreover RelaxNG
decouples identity-
constraints and
specifications of document
structures.

uniqueness for
non-attribute

No Yes ---

key for attribute No Yes ---
key for non-
attribute

No Yes ---

foreign key for
attribute

Partial Yes ---

foreign key for
non-attribute

No Yes ---

Miscellaneous
dynamic
constraint

No No No nodifference

version No No No nodifference
documentation No Yes Yes norelevance Extra information about declarations,

elements and attributes do not impact content-models
embedded
HTML

No Yes Yes norelevance HTML embedding allows designers to
describe and comment their schemas, but does not
modify content models.

self-
describability

No Partial No norelevance Self-describability is useful for
implementers, but does impact the expressiveness of
content-models

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 17

Legend:

norelevance = does not change content-model expressiveness
relevance = changes content-model expressiveness
nodifference = supported (or unsupported) by both of the languages
noanalysis = not yet analyzed in detail

§ Conclusions
This paper is rooted in the traditional conflict between prescriptive and descriptive markup languages.
Our first goal was to further investigate descriptive schemas and identify some subclasses of that approach,
in order to prove properties of a pattern-based model we presented at Extreme 2005 and we actually use
in publishing applications.

Although the paper has intentionally been focused on formal languages/schemas properties, in fact, we
have also been working on a variety of tools which use internal formats based on our patterns. IsaWiki
[DIV05], for instance, is on open publishing environment aiming at simplyfying web editing processes
and allowing users to customize (the content of) any web page; IsaLearning [DFMSV06] is a chain of
authoring tools which allows users to easily create high-quality learning-objects from raw input files.

The philosophy behind those applications is that a radical simplification of markup practice can facilitate
creation of simple but expressive schemas and documents. In those contexts where data formats are meant
to express information extracted by a posteriori analyses, in fact, the schemas for these formats could not
be restrictive and express a priori rules of validation. On the contrary, users and applications take
advantages from more general (descriptive) schemas which guarantee compatibility and 'tie' only a partial
but actually relevant information. This work aims at consolidating our theory, by showing how to
formalize and automate such a generalization/reduction process.

To go back to our original subject, we plan to further work on formal properties of our model. Besides
extending our grammar-based analysis to other validation languages, we also plan to investigate
minimality and correctness of our patterns. From an implementation perspective, instead, we will work
on actual converters able to automatically transform schemas, as well as editors for pattern-based
documents.

Acknowledgements
We thank the components of our reseach team, Michael Sperberg-McQueen and the anonymous reviewers
for their helpful comments.

Bibliography
[BMNS05] G. J. Bex, W. Martens, F. Neven, and T. Schwentick, "Expressiveness of xsds: from practice

to theory, there and back again" In WWW ``05: Proceedings of the 14th international conference on
World Wide Web, New York, NY, USA, ACM Press, 2005.

[BPSMM00] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler., "Extensible Markup Language
(XML) 1.0", http://www.w3.org/TR/REC-xml, 2000.

[CJMM01] James Clark, and Makoto Murata, "RELAX NG DTD Compatibility", oasis-open.org, http://
www.oasis-open.org/committees/relax-ng/compatibility.html, 03 Dec. 2001.

[CM01] James Clark, and Murata Makoto, "Relax NG", http://relaxng.org/spec-20011203.html, 03 Dec
2001.

[CR02] Robin Cover, "SGML/XML: Using Elements and Attributes", http://xml.coverpages.org/
elementsAndAttrs.html, 26 Aug. 2002.

[DFMSV06] A. Di Iorio, A.A. Feliziani, S. Mirri, P. Salomoni and F. Vitali "Automatically Generating
Accessible Learning Objects", Journal on Educational Technology & Society, Volume 9, Issue 4,
2006.

[DIGV05] A. Di Iorio, D. Gubellini, and F. Vitali, "Design Patterns for Descriptive Document
Substructures", Extreme Markup Conference, Montreal, Canada, 2005.

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 18 Extreme Markup Languages 2007®

http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/committees/relax-ng/compatibility.html
http://www.oasis-open.org/committees/relax-ng/compatibility.html
http://relaxng.org/spec-20011203.html
http://xml.coverpages.org/elementsAndAttrs.html
http://xml.coverpages.org/elementsAndAttrs.html

[DIV05] A. Di Iorio, Vitali, "From the Writable Web to the Global Editability", Proceedings of ACM
Hypertext '05, ACM Press, Salzburg, Austria, 2005, pp. 35-45.

[Jel05] Rick Jelliffe, "Schematron 1.5", http://xml.ascc.net/schematron/.

[JR01] Rick Jellife, "The W3C XML Schema Specification in Context", O'REILL xml.com, http://
www.xml.com/pub/a/2001/01/10/schemasincontext.html, 10 Jan. 2001.

[LDWCW00] Dongwon Lee, and W. Chu Whesley, "Comparative analysis of six XML schema
languages", SIGMOD Rec., ACM Press, http://doi.acm.org/10.1145/362084.362140, New York, USA,
2000.

[MLM00] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal language
theory. Extreme Markup Languages, 2000.

[Pie01] W. Piez, "Beyond the ``descriptive vs. procedural`` distinction", The Extreme Markup
Conference, Montreal, Canada, 2001.

[Qui96] L. Quin, "Suggestive Markup: Explicit Relationships in Descriptive and Prescriptive DTDs",
The SGML 96 Conference, Boston, MA, USA, 1996.

[Ren00] A. Renear, "The Descriptive/Procedural Distinction is Flawed", Markup Languages: Theory
and Practice, 2000.

[TBMM01] Henry S. Thompson, David Beech, Murray Maloney, and Noah. Mendelsohn, XML Schema
Part 1: Structures, http://www.w3.org/TR/xmlschema-1/, May 2001.

The Authors
Antonina Dattolo
Department of Mathematics and Applications R. Caccioppoli, University of Napoli Federico
II
Napoli
Italy
dattolo@unina.it

Antonina Dattolo is an research associate at the Department of Mathematics and Applications "R.
Caccioppoli" at the University of Naples Federico II. He holds a Laurea degree in Computer Science
from the University of Salerno and a Ph.D. in Applied Mathematics and Computer Science from the
University of Naples Federico II. Her research interests include markup languages; concurrent
architectures for distributed hypermedia models; and . software agents. She is the author of several
papers on distributed hypermedia models.

Angelo Di Iorio
Department of Computer Science, University of Bologna
Bologna
Italy
diiorio@cs.unibo.it

Angelo Di Iorio holds a Laurea degree and a PhD in Computer Science from the University of
Bologna. His research interests include content management systems, web technologies, markup
languages and digital publishing.

Silvia Duca
Department of Computer Science, University of Bologna
Bologna
Italy
ducas@cs.unibo.it

Silvia Duca holds a Laurea degree in Computer Science from the University of Bologna. Her research
interests include web-semantic, web technologies, ontologies and markup languages.

Converting into pattern-based schemas: a formal approach

Extreme Markup Languages 2007® page 19

http://xml.ascc.net/schematron/
http://www.xml.com/pub/a/2001/01/10/schemasincontext.html
http://www.xml.com/pub/a/2001/01/10/schemasincontext.html
http://doi.acm.org/10.1145/362084.362140
http://www.w3.org/TR/xmlschema-1/
mailto:dattolo@unina.it
mailto:diiorio@cs.unibo.it
mailto:ducas@cs.unibo.it

Antonio Angelo Feliziani
Department of Computer Science, University of Bologna
Bologna
Italy
afelizia@cs.unibo.it

Antonio Angelo Feliziani holds a Laurea degree in Computer Science from the University of
Bologna. His research interests include document management systems, web technologies, markup
languages and e-Learning.

Fabio Vitali
Department of Computer Science, University of Bologna
Bologna
Italy
fabio@cs.unibo.it

Fabio Vitali is an associate professor at the Department of Computer Science at the University of
Bologna. He holds a Laurea degree in Mathematics and a Ph.D. in Computer and Law, both from
the University of Bologna. His research interests include markup languages; distributed, coordinated
systems; and the World Wide Web. He is the author of several papers on hypertext functionalities,
the World Wide Web, and XML.

Extreme Markup Languages 2007®
Montréal, Québec, August 7-10, 2007

This paper was formatted from XML source via XSL
by Mulberry Technologies, Inc.

Dattolo, Di Iorio, Duca, Feliziani, and Vitali

page 20 Extreme Markup Languages 2007®

mailto:afelizia@cs.unibo.it
mailto:fabio@cs.unibo.it

