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The market for parallel and distributed computing systems keeps growing. Technological
advances in processor power, networking, telecommunication and multimedia are stim-
ulating the development of applications requiring parallel and distributed computing.
An important research problem in this area is the need to find a robust bridge between
the decentralisation of knowledge sources in information-based systems and the distri-
bution of computational power. Consequently, the attention of the research community
has been directed towards high-level, concurrent, distributed programming. This work
proposes a new hypermedia framework based on the metaphor of the actor model. The
storage and run-time layers are represented entirely as communities of independent ac-
tors that cooperate in order to accomplish common goals, such as version management
or user adaptivity. These goals involve fundamental and complex hypermedia issues,
which, thanks to the distribution of tasks, are treated in an efficient and simple way.
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1. Introduction

The World Wide Web [1] (WWW or just Web for short) started at CERN as a

project to connect a heterogeneous collection of information using a hypermedia

document metaphor. In spite of the large diffusion, in its current form the WWW

suffers from two drawbacks, it is static and it has a weak distributed architecture.

Due to a strong evolution of technologies from centralised to decentralised systems,
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it is important to also change the software engineering perspective in interface

design [2]. The current availability of information highways and of inexpensive

network technologies modifies [3] the traditional perspective of hardware (see for

instance network computer) and software (agent-based software). From a software

standpoint, there is an interest in viewing software as an “intelligent” collection of

agents that interact by coordinating knowledge-based processes [2,4,5]. In this way,

software can be conceived as an open system, large-scale information systems that

are always subject to unanticipated outcomes in their operation and new information

from their environment [6]. Open systems realise the “manager paradigm”; the

manager reuses and coordinates the work of expert individuals without necessarily

understanding it.

In this paper, we present a complete concurrent distributed hypermedia model

designed according to an object-oriented concurrent paradigm [7]. Distributed hy-

permedia are not a novelty in the literature. Obviously, the decentralisation of

media and the co-operation of several users working simultaneously have stimu-

lated scientists in investigating efficient and suitable tools and models to provide

distributed processing in hypermedia. In conventional hypermedia systems [8–10],

all the operations are carried out by an active central unit which exerts control on a

set of passive components. In our model this situation is reversed. There is no main

resource responsible for the global management but an aggregation of autonomous

and independent actors, each of them embodying a behavioural responsibility and

a partial perception of the other members of the actor community. This design

perspective enables to formulate new software design approaches, but it raises com-

plex questions about the effective construction of software. This paper reports a

research project which aims to define and realise a new hypermedia framework by

adopting the actor model as reference design model.

The structure of the paper is as follows. Section 2 introduces the abstract

language used to formally describe our actor-based model of hypermedia, HyDe

(acronym of Hypermedia Distributed Design). In Sec. 3, the storage layer of our

model is presented in detail. The fundamental issue of version management is

examined in Sec. 4, emphasizing how it offers a uniform treatment for atomic and

composite components. Section 5 is dedicated to the run-time layer: the basic

architecture of the hypermedia is extended with new actor classes in order to support

efficiently adaptive navigation and presentation. A discussion and comparison with

related works are followed by the conclusions.

2. Actor Formalism

In order to formally describe our actor-based model of hypermedia we use a simple

notation, named ESAL. ESAL (Extended SAL) is an extension of SAL (Simple

Actor Language), an abstract language defined in [11] to formalise basic aspects

of actor oriented programming. We adopt ESAL as a descriptive tool to define our

actor entities and their behaviours. The construct Def is used to define an abstract
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actor, myactor, according to this form:

( Def myactor

{inherit-from-this-class}
(acquaintance list)

[communication list] )

An actor is described by specifying three elements: its superclass, its data part

and its script part, respectively put between braces, parentheses and brackets. In

particular, the communication list is a sequence of scripts which can be executed

by myactor. The communication between a sender and one or more receivers is

accomplished by the “send” command types:

• send allows an actor to send a point-to-point message;

• send-multicast allows an actor to send multicasting messages on the net;

• send-now-multicast is similar to the previous send-multicast, but it

requires an “acknowledge” message from the receiver actors.

A general form of the send construct is the following:

send− type (script-name argument-list) to destination-list

where send− type . . . to is one of the send commands; script-name argument-list

determines the script (with its arguments, if any) that the destination actors trig-

ger once they have received the message, while destination-list, introduced by the

keyword to , identifies the actor(s) to which the message is addressed.

3. The Storage Layer Model

The storage layer model constitutes the structure of the hypermedia as provided by

its author. The main purpose of this layer is to maintain the persistent objects, the

collection of which defines the hypermedia in terms of dynamic internal mechanisms.

The storage layer is organised in two levels:

• The first level, named Structural Level, contains atomic nodes (named Hy-

pActors) and links (named HypLinks).

• The second level is named Meta level and constituted by composites (named

Collectors).

In the following, we will use the term “StorActor” to indicate a generic actor

belonging to the storage layer (HypActor, HypLink or Collector).

In the rest of this section we discuss all these actor classes in detail by comparing

them with traditional counterparts known in other popular hypermedia models, in

particular with Dexter [9] and Dexter-based models [12–14].
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3.1. HypActors

HyDe overcomes the traditional concept of “node” by proposing an active perspec-

tive, the HypActor. The main idea is to introduce inside the node a number of

important functionalities for the management of the node itself and for the control

of external interactions. For this reason, the fundamental issues normally handled

in traditional models by separate layers and functions, are directly accomplished by

the nodes in our model.

(Def HypActor

{Actor}

(text picture sound

to from toAnch fromAnch toConf fromConf currConf confRange

cloneOf unaltered keys danglnk whoIncludesMe)

[(accessor ...), (cloning ...), (freezing ...), (unfreezing ...),

(find-frontier ...), (take-new-conf ...), (update-conf ...),

(awakening ...), (change-references ...), (optimize-yourself ...), ...] )

Fig. 1. HypActor class definition.

The ESAL code in Fig. 1 defines the HypActor class.

The HypActor contains the data part (in parentheses) and the control part (in

brackets). These slots are added to the basic information (such as name, mbox,

. . .) inherited from the primitive class Actor. The meaning of some acquaintances

follows:

• text/picture/sound: these slots are used to maintain pointers to media objects.

• to/from: these slots store the addresses of a particular class of actors, the

HypLinks. HypLinks serve as actors which support link-based operations. to

maintains all the links leaving the node, while from denotes the links entering

the same HypActor.

• toAnch/fromAnch: they mark a region, an item or a substructure of a compo-

nent as an end-point of a link. Anchors have no direction; the prefixes to and

from are used only to create a correspondence between these acquaintances

and to/from.

• toConf/fromConf: these slots maintain the configuration of the related anchors

and links. Each element of toAnch has a corresponding to anchored object in

a given configuration, present in the resource toConf.

• currConf: this slot maintains the current configuration of the HypActor.

• confRange: this resource dynamically updates and stores all the possible con-



Distributed Information and Control in a Concurrent Hypermedia-Oriented Architecture 349

figurations to which the actor may belong.

• cloneOf: if the actor is a clone, then this slot contains the address of the actor

from which the clone has been originated.

• whoIncludesMe contains the list of Collectors that address the current

HypActor.

The script section defines the possible task which the actor can accomplish. In

the next sections, we will provide details of some of the most important scripts.

3.2. HypLinks

Links are entities that manage relations between other components. They represent

a sequence of two or more “end-point specifications”, each of which refers to a

hypermedia component, or to a section of it. In particular, when a link refers to

something more complex than an entire component, it is called a “span-to-span”

link (like in Intermedia [15]). In our model, links are actors, i.e. HypLinks, whose

definition is given in Fig. 2.

(Def HypLink

{Actor}

(from to fromAnch toAnch

fromConf toConf currConf confRange

dnglFlg dnglAnch

cloneOf unaltered whoIncludesMe)

[(resolver ...), (cloning ...), (freezing ...), (unfreezing ...),

(find-frontier ...), (take-new-conf ...), (update-conf ...),

(awakening ...), (change-references ...), (optimize-yourself ...), ...] )

Fig. 2. HypLink class definition.

The information contained in the data part is similar to the HypActor’s. For

example, the slots to and from will contain two lists of end-points, the addresses

of HypActor and/or Collector. These slots suggest the direction of the HypLinks,

but they can be traversed in both directions. The HypLinks support very general

multi-headed links and a variety of link subtypes, as one-to-one and one-to-many

links. Specific HypLink acquaintances are:

• dnglFlg. This is a flag that signals whether the link is dangling or not.

• dnglAnch. This data contains the “dangling” anchor list.
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In order to better discuss the semantics of the HypLink entity and to underline

the difference with the Dexter model, in Fig. 3, we give a representation of the

link component.

Three HypActors, i.e. A01, A02, and A03, communicate with the link entity L01.

The HypLink entity contains useful information to identify the addressed anchors

in the corresponding HypActors.

In particular, the slot from contains the address of the HypActor A01 in which

an end-point is given by the textual anchor txt[i,i’] in the corresponding resource

fromAnch. The slot to is a list which addresses two HypActors A02 and A03 in the

corresponding internal parts identified by the acquaintances toAnch; more precisely,

the first anchor is a graphical end-point (img[ j,j’]), while the second is a reference

to the whole HypActor A03. This last anchor is similar to the whole-component

anchors supported by the DHM model [12]. With reference to Fig. 3, let us note

that our approach differs from [16] with respect to anchor management, since we do

not need to introduce distinct objects in order to identify anchors, but we simply

add designed internal resources and scripts.

~~ ~~~~~ ~~~ ~
~~~~ ~~~~ ~~~~~
~~~ ~~~~~~~~~ ~

name:
to: toAnch:
danglnk:

A01
L01 txt[i,i']

name:
from: fromAnch:
to: toAnch:
dnglFlg: dnglAnch:

L01
A01                             txt[i,i']

A02, A03                    img[j,j'], whole
False

~~~~~ ~~~ ~~~~~~~

~~~~~~~~~
~~ ~~~~ ~~~

name:
from: fromAnch:
danglnk:

A03
L01 whole

~~~~~~~
~~~ ~~~ ~~
~~~~ ~~~~~ ~~ ~~

~ ~~ ~
~~~

name:
from: fromAnch:
danglnk:

A02
L01 img[j,j']

Fig. 3. Hyplink and HypActors.

In Fig. 3, observe that inside HypLink and HypActors there is enough knowledge

to construct the link net; for instance, the slot from of the HypActor A02 contains

information about the link (L01) having the anchor img[ j,j’] (present in the slot

fromAnch) as end-point. The active knowledge and control containing important

context information [13] are used to increase the local computational power of the

HypActors as well as the HypLinks.

The effect of this autonomy is particularly interesting during the execution of

the resolver and accessor functions. According to Dexter’s model, the resolver is the

function responsible for “resolving” component specifications into the corresponding

UIDs. Once the UIDs of the components are returned, the function accessor makes

them accessible. In Dexter this process is accomplished in a centralised way using

functions which are not local to the involved objects, while, in our approach, locality

is protected because resolver and accessor are respectively scripts of the HypLink

and HypActor communities. Moreover, the distributed concurrent facility of the

model allows parallel handling of these functions.

For example, considering Fig. 3, the request to follow the link L01 in the Hy-

pActor A01, starting from the anchor txt[i,i’], provokes the call to the script resolver;
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thus, the message is sent to the HypLink L01 which, in its turn, sends in multicast a

message to each HypActor contained in the slot to (in our example, A02 and A03),

asking to make accessible themselves. From a programming standpoint, this means

to trigger the script accessor local to the HypActors. Once the execution of this

script takes place, by addressing the specific anchors, then the span-to-span link

process may be considered as terminated.

In Fig. 3, the slot danglnk related to the HypActors, and the slots dnglFlg

and dnglAnch of the HypLink L01, are useful to manage possible dangling links.

A dangling link can occur when modifications are applied to links: more precisely,

a link is dangling if it has not at least two endpoints (source and destination). The

treatment of the dangling link is an intrinsically dynamic process and imposes im-

portant aspects which are not present in the pure Dexter model. In Dexter-based

hypermedia, it is possible to introduce dangling link management only by modifying

basic issues of the Dexter models; for instance, in DHM [12] dangling link treat-

ment is limited to the detection and re-link option in cases when the end-points

component has been deleted.

In our approach dangling link management is supported in full without sacrific-

ing the original model organisation. The first aspect to discuss is how a dangling

link is represented.

In Fig. 4 the HypActor A01 of Fig. 3 has been modified. In the slot to the

information related to the link L01 has been deleted. This deletion leads to a

dangling link.

~~ ~~~~~ ~~~ ~
~~~~ ~~~~ ~~~~~
~~~ ~~~~~~~~~ ~

name:
to: toAnch:
danglnk:

A01

L01

name:
from: fromAnch:
to: toAnch:
dnglFlg: dnglAnch:

L01
A01                             txt[i,i']

A02, A03                    img[j,j'], whole
True txt[i,i']

~~~~~ ~~~ ~~~~~~~

~~~~~~~~~
~~ ~~~~ ~~~

name:
from: fromAnch:
danglnk:

A03
L01 whole

~~~~~~~
~~~ ~~~ ~~
~~~~ ~~~~~ ~~ ~~

~ ~~ ~
~~~

name:
from: fromAnch:
danglnk:

A02
L01 img[j,j']

Fig. 4. Dangling link and anchors.

In our approach, this situation is treated by updating the local data of the

corresponding HypLink, the slot dnglAnch in L01 is set to txt[i,i’]. Since the slot

from of the HypLink L01 contains a single reference, this means that no HypActor

may access the HypLink in a standard way. This situation is represented by the

value True in the slot dnglFlg; on the contrary, the value False (present in Fig. 3)

reflects the fact that the link L01 was not dangling. This discussion describes only

the data part useful to describe a dangling link. In fact, the effect of a dangling

link is reported in different crucial contexts of the hypermedia model, namely:

• The strategy to follow a link is obviously affected and thus requires more

complex control.
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• In order to avoid the expensive proliferation of redundant nodes the version

control mechanism should be applied. This means that the version control

strategy must take into account the dangling link as an object belonging to

different configurations.

• The dangling link has an important role even in information retrieval if we

wish to acquire finer grained information associated with detached end-points.

3.3. Collectors

As pointed out by Halasz [17] “composites would provide a means of capturing

nonlink-based organisations of information, making structuring beyond pure net-

works an explicit part of hypermedia functionality”. Composites improve the mod-

ularity and thus the reusability of the hypermedia since they oblige the data to

be maintained separately. In Dexter the composites encapsulate components. This

means that composites act essentially as data containers; thus they lack the ability

to provide more efficient organisation strategies not strictly reduced to composition

by “copy” [14]. In HyDe the composites are represented by the class of actors called

Collectors. This class:

• allows the author to structure the hypermedia by creating collections;

• allows the user to retrieve a collection of HypActors, HypLinks and/or (even-

tually other) Collectors, by search or by query; this collection will represent

a direct reference to the (already existing) hypermedia portion. This type of

composite is known in the literature as a computed composite [17];

• supports the user during browsing strategies. When the user browses, a collec-

tion is built on demand at runtime and provided to the user by activating an

appropriate versioning mechanism in order to avoid unnecessary copies in the

database. A similar collection is known in the literature as virtual composite.

In our model, the Collector plays the traditional role of container of atomic

entities, i.e. HypActors, HypLinks, or of other composite entities, i.e. Collectors.

This role of container is assumed only from a logic standpoint, in the sense that the

Collector addresses HypActors, HypLinks and Collectors which are not necessarily

encapsulated. In Fig. 5, the ESAL definition of the Collector class is provided.

According to the ESAL definition, a Collector is a kind of HypActor supplied

with additional resources which are useful to gather more control and information on

sections of the hypermedia. The main features of this class consist of the following

data and services:

• collection/linkCollection: these slots are used to store a set of HypActor and

Collector/HypLink addresses corresponding to a given collection;

• frontier: this slot contains the addresses of the incoming and outgoing

HypLinks from the HypActors (and Collectors) in collection. In general, the

frontier is the union of all the addresses contained in the acquaintances to and
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from (inherited from the HypActor class) of the Collector and of the actors in

collection.

• create/optimize/search-config: these scripts handle and improve the configu-

ration management;

• explicit-query: this script supports the information retrieval facility.

(Def Collector

{HypActor}

(collection linkCollection frontier)

[(create-config ...), (optimize-config ...), (search-config ...),

(explicit-query ...), (take-new-conf ...), ...] )

Fig. 5. Collector class definition.

At creation time the Collector sends a multicast message to the actors contained

in its to and from slots; then it notifies the contacted actors that it maintains a ref-

erence to them and allows them to update the acquaintance whoIncludesMe. In this

way, the important function WhoIncludesMe?, considered in [14] as an important

issue not supported by Dexter, is easily supported in our model.

Now let us discuss in detail the version management, stressing the dynamic

issues and their treatment in HyDe.

4. Version Management

Version management is important because it allows one to handle past states that

can be re-used in future decisions, to keep track of the historical progress of the

system and to support concurrent facilities in multi-user architectures. Its use

also provides consistency support for the construction of widely distributed, open

and interactive hypermedia models. Version management is viewed at two levels:

versioning of node and versioning of structure. The need of distinguishing these

levels arises from an obvious tendency to consider local, node-focused activities

differently from those typically associated with a net-based structure (the same

distinction is applied in software engineering [18] where, for single modules, version

control, whereas for complete programs configuration management). Traditionally

in hypermedia design the node is responsible for internal information [9] and, in

some proposals [19], for its closer neighbours. For complex, external operations it

is necessary to abandon the node entity and to rely on additional modules, which

are designed to store a model of the net and to follow and maintain the evolution of

the overall hypermedia. Our approach to version management is uniform, i.e. the

node/structure distinction is broken, since in the actor model each single entity is
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able to obtain global information not by accumulating data in a single entity, but

by applying concurrent cooperation schemes among de-centralised entities in such a

way as to accomplish common goals. Thanks to this new perspective the version of

node becomes a particular aspect of the most general version of structure. Hence,

in this paper we focus our attention in describing the configuration management as

the process that enables one to handle designed states of hypermedia evolution.

4.1. Creating a configuration

Hypermedia nodes can be created, deleted or modified by the user. The set of

changes will produce a new configuration relative to the involved entities. This

process of creating a configuration requires more attention if it is necessary to save

the old configuration of the system. In our model, the process is made up of the

following steps:

• focus which objects may change (as we will see these objects are not only

those directly selected by the user);

• create copies of such objects, the so-called clones;

• freeze these objects in such a way as to transform them in passive entities;

• finally allow the user to apply the changes to the clones, to get the new current

configuration.

In Fig. 6, the script create-config, defined in the ESAL language, provides a

formal description of this process.

(create-config (coll linkColl newConfig) 1

(let∗ ((closure [send-now-multicast find-closure to linkColl]) 2

(collToModify (append coll closure)) 3

(clones [send-now-multicast] cloning to collToModify]) 4

(linkClones [send-now-multicast cloning to linkColl]) 5

(front [send-now-multicast find-frontier to collToModify]) 6

(setq collection clones linkCollection linkClones frontier front)) 7

[send-multicast freezing to collToModify linkColl]) 8

[send-now-multicast (take-new-conf newConfig) to collection LinkCollection] 9

[send-now-multicast (update-conf newConfig) to frontier ]) 10

Fig. 6. The script to create configuration.

The section of hypermedia on which the user requires changes is identified by

the two local resources coll and linkColl representing, respectively, the set of selected

HypActor/Collector and HypLink objects (see row 1). Other objects may be mod-

ified as a side effect: when the user modifies a HypActor, then its internal structure
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may change but this alteration does not affect the link information; if the user

wants to modify a link then the involved entities are both HypActor and HypLink

objects. The collection of the HypActors, addressed by the HypLinks which may be

modified and do not belong to coll, defines the closure. Since closure depends on the

current link selection, in row 2 it is explicitly computed by executing a multicasting

message sent to the HypLinks addressed by the parameter linkColl. Finally, the

resource collToModify, representing the complete area to duplicate (without links),

is established (row 3). Now the copying operation may start: a multicast message

(row 4) is addressed to the whole area composed of HypActors and Collectors which

must be duplicated; the same action is repeated (row 5) for HypLinks actors. As an

effect of these messages only the actors that can be modified are cloned (see [20] for

a more detailed discussion of this mechanism). The execution of the successive mul-

ticast (row 6) serves to identify the HypLinks bordering on the cloned area. This

frontier is assigned to the resource front. In row 7, the clones’ addresses and the

frontier are added in local acquaintances of the Collector (collection, linkCollection

and frontier). In this way, the user will access and modify the requested area acting

on the Collector. Cloned actors are hence frozen (row 8) and the clones replace the

original ones in the new configuration. In more detail, as shown in row 9, the execu-

tion of the script take-new-config updates the name (the clone, even though identical

to the cloned, is a new different entity and hence has new address and name), the

current configuration (the clone belongs to the just created configuration newCon-

fig), and the configuration range. Different updating operations must be applied for

the HypLinks in frontier. In fact, the HypLinks inside the frontier refer to a number

of frozen actors; additional correct references must be established with the clones

of the frozen actors. This operation corresponds to the statement of row 10. Let

us point out that the frontier is not cloned, but just updated; this action serves to

bind the bulk of the new configuration with the rest of the hypermedia.

name:
from: fromConf:
currConf: confRange:

L
A c

c (c )

4

2 0

0 0,Ω

L1

L2 L3

A1

A2

A3

A4 L5

L4

L6
(a)                                                                                               (b)

coll + linkColl
closure

frontier
frontier

A5

A6

Fig. 7. Closure and frontier.

In Fig. 7(a) we show a simple case in which the user decides to modify the nodes

A1, A4 and the link L1.

In this example, A1 and A4 individuate the resource coll, L1 the resource linkColl.
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The closure is given by A2 and A3. Hence, the whole area to duplicate, i.e. coll-

ToModify, is the set of actors A1, A2, A3, A4, L1. According to our definition,

the frontier is composed by L2, L3, L4, L5, L6, while the actors A5 and A6 remain

unchanged and are not duplicated. Figure 7(b) provides the local environment of

the HypLink L4. The slot fromConf specifies the configuration of the entity A2,

i.e. the configuration labeled c0. The dynamic evolution of the hypermedia extends

the membership of unaltered actors to the sequence of next configurations created

after c0. This information is contained in the slot confRange where the value (c0,Ω)

establishes the membership scope, namely from c0 up to the last created config-

uration labeled with Ω. The cloning mechanism is now applied to the actors in

coll, linkColl and closure of Fig. 7(a). The effect of the cloning is shown in the

next Fig. 8(a).

name:
from: fromConf:
currConf: confRange:

L
A , A c , c

c (c , c ), (c , )

4

2 2 0      1

1 0      0 1 Ω

1

(a)                                                                                   (b)

L1

L1

L2 L3

A1

A1

A2

A2

A3

A3

A5
A4

A4

A6

L5

L4

L6

1 1 1

1

1

Fig. 8. Clones and cloned.

The cloned actors (A1, A2, A3, A4, L1), shown in grey, become suspended,

i.e., they become inaccessible from the standard external stimulus and messages,

transforming themselves into static, frozen entities. Aij (or Lij) denotes the new

name of the actor Aj (or Lj) in the i-th version. For simplicity, we suppose that

the new occurring version is labeled with the superscript 1. This notation is used

to identify the clones which substitute the original actors. In Fig. 8(a), we note

how the actors L2, L3, L4, L5, L6 have now new bindings with the peripheral

area of the copied hypermedia (A1
1, A1

2, A1
3, A1

4). In particular, in Fig. 8(b), we

show the context of HypLink L4 after the cloning. The labels c0 and c1 denote

respectively the configuration related to Fig. 7 and the new configuration occurring

in Fig. 8. Figure 8(b) shows the change of the internal knowledge: from contains a

new HypActor A1
2 and, similarly, fromConf contains c1. The new values in currConf

and confRange characterise the new configuration. Now, while the configuration

c1 represents a range of configurations, c0 identifies only itself: for this reason, A2

belongs exclusively to c0 is exclusive, whereas A1
2 belongs to each configuration

created after c1 (c1 included).
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We note that the duplication is applied to the actors which may potentially

be modified. If after the cloning, the user does not perform modifications on a

clone, then it is not necessary to maintain the clone itself. This situation may occur

for several clones and thus has an impact on the overall process. For this reason,

it is important to avoid useless copies, deleting unchanged clones but preserving

the consistency of the hypermedia. In fact, a direct deletion of a clone cannot

be applied since the clone exists in the hypermedia together with a number of

connections. Hence, the deletion must be preceded by an updating operation which

involves clones and cloned.

The same mechanism is applied also to Collectors (versioning occurs also for

Collector entities in order to guarantee a uniform treatment of basic hypermedia

issues).

5. The Run-Time Layer Model

In this section, we discuss the presentation of the storage layer components to the

user, i.e. the run-time layer. Figure 9 shows the complete architecture including the

new actor classes belonging to the run-time layer.

Fig. 9. The complete hypermedia architecture.

Two extra actor levels are added, the teleological and the adaptive levels. Here

we briefly discuss their role.

• The Teleological level provides all the possible dynamic user perspectives of the

hypermedia and interfaces the data/services provided by a certain StorActor

and the user. This level contains a population of actors named TeleoActors.

TeleoActors compose the front-end between the complete, anonymous hyper-

media run-time layer and the user’s expectations. Thanks to a distributed

problem-solving strategy, TeleoActors specialise the contents of the related

StorActor according to the user’s profile.



358 A. Dattolo & V. Loia

• Adaptive Level contains InfoActors and UserActors. The InfoActors work as

independent monitors of user behaviour, observing the human actions for each

single hypermedia node: their main task is to form a web of prompt analysers

specialised in recording user’s actions on the hypermedia nodes. Furthermore,

to each user corresponds a UserActor that plays the role of coordinator of the

various InfoActors.

In the following sections we provide details about these new actor classes.

5.1. TeleoActors

The TeleoActors act as an adaptive interface between the storage layer and the

user. In a classical approach, the instantiation of a component consists of a “copy”

in cached memory space. When the user writes or edits this component then the

cached instance is replaced with a new copy and then restored in the storage layer.

A TeleoActor offers a more flexible mechanism of instantiation since it acts as a

mediator between the storage level and the end-user by providing customised views

on storage layer entities. Each view consists in adding/deleting data and services

to the corresponding actor. Let us describe in Fig. 10 the ESAL definition of

TeleoActor.

(Def TeleoActor

{Actor}

(stor info

hypServices image

inSuggestion brSuggestion cnSuggestion)

[(apply-filter ...), (visualise ...), (tree-brws ...), (grph-brws ...), ...] )

Fig. 10. TeleoActor class definition.

We detail some of the local acquaintances:

• stor. It is important to note that in the data part of the TeleoActor we have

the connection with the corresponding StorActor. More precisely, when a

StorActor instance is generated, automatically an instance of a TeleoActor is

created, and coupled with the former via the stor acquaintance, containing

the address of the instance.

• info. As a side effect, the previous mechanism couples an instance of a Teleo-

Actor with its corresponding InfoActor, addressed by this slot.
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• hypServices. This acquaintance may be viewed as a frame which depicts all

the possible usable services on the stor. At the creation of a TeleoActor,

the complete list of services is present. Successively, during the interaction

between the user and the system, each TeleoActor may alter these services on

the basis of information received from its InfoActor.

• inSuggestion/brSuggestion/cnSuggestion. These resources collect the user per-

spective and preferences, and are updated by the InfoActor. These three dif-

ferent data collect the user behaviour changes, in terms of three basic action

categories: interface, browsing and contents.

The main role of a TeleoActor consists in specialising the use of its stor, according

to the evolution of the preferences shown by the user during the browsing activity.

The ability to shape the functionalities of the stor is given through a cooperation

with the adaptive level: in fact, the knowledge about the user behaviour is acquired

by an external entity, the InfoActor. It constitutes the main source of information

useful to the TeleoActor in order to define which view must be applied on its stor;

on the basis of the inSuggestion, brSuggestion and cnSuggestion information received

by the InfoActor, the TeleoActor performs the script apply-filter on its stor. The

execution of this script consists of three actions:

• copy the cached instance of the corresponding StorActor into a new temporary

memory space;

• modify this instance by applying the specified view;

• replace in its local acquaintance image the old reference to the cached image

with the new address of the last cached instance.

The script visualise carries out the visualization of the image containing the last

user preferences.

5.2. InfoActors

InfoActors work as autonomous monitors of user behaviour. Each InfoActor moni-

tors the user actions on the current StorActor. The InfoActor is created with enough

knowledge to recognise the user actions. Of course, this knowledge is related to the

domain content. The code in Fig. 11 shows its definition.

The existence of InfoActors leads to a simple and efficient organisational struc-

ture that enables the distribution of the user modelling activity viewed as a collab-

orative effort on a decentralised net. Here we describe the local acquaintances of

the InfoActor:

• stor. This slot addresses the corresponding StorActor.

• teleo. This slot contains the address of the corresponding TeleoActor.

• usrAct. This resource identifies the UserActor.

• domain. In this slot the context knowledge given by the hypermedia author

is stored.
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(Def InfoActor

{Actor}

(stor teleo usrAct

domain

inSuggestion brSuggestion cnSuggestion

inInfo brInfo cnInfo msInfo

inTrust brTrust cnTrust msTrust

inHints brHints cnHints msHints)

[(notify-changes ...), (update-trust ...),

(trace-in ...), (trace-br ...), (trace-cn ...), (trace-ms ...), ...] )

Fig. 11. InfoActor class definition.

• inSuggestion/brSuggestion/cnSuggestion. These slots include the user prefer-

ences in term of three categories of actions: interface, browsing, contents.

Their format is specific for TeleoActors.

• inInfo/brInfo/cnInfo/msInfo. These resources contain information necessary to

qualify the user actions in terms of four basic categories: interface, browsing,

contents, measurements. Each of these slots contains a sequence of identifiers

representing the features used during the evaluation of the user behaviour.

For instance, msInfo contains a sequence of numbers which quantify some user

actions performed on the corresponding HypActor/Collector, such as:

(a) the number of visits done by the user;

(b) the average value of the time spent during the visits;

(c) the number of help activations required by the user.

• inTrust/brTrust/cnTrust/msTrust. These four slots are used to record the trust

values of the InfoActor.

• inHints/brHints/cnHints/msHints. These resources serve to receive the new

behaviours sent by the UserActor.

Essentially, the InfoActor establishes two different communication schemes with

its TeleoActor and the UserActor.

• The messages from the InfoActor to its TeleoActor enable the latter to be

updated to the more recent user needs. This is possible thanks to the local



Distributed Information and Control in a Concurrent Hypermedia-Oriented Architecture 361

InfoActor’s acquaintances which provide useful information about user be-

haviour changing, i.e. inSuggestion specifies the last user interface choices,

brSuggestion represents the user browsing modalities and cnSuggestion rep-

resents the user content expectations. The former slot details those aspects

which in the Dexter approach are stored in the Presentation Specification area

of any component [9]. The distinction between these three acquaintances de-

rives from the need to consider three different knowledge sources: the first

source (inSuggestion) is used to personalise the interface by modifying the

way in which the contents are displayed; the second resource (brSuggestion)

depends strictly on the browsing style of the single user; finally, the last

slot (cnSuggestion) indicates the views to apply to the contents of the Hy-

pActor/Collector but it is independent of the presentation modalities. These

three resources are sent from the InfoActor to the corresponding TeleoActor

by means of the script notify-changes.

• A communication activity also exists between InfoActor and UserActor. When

the user navigates through the hypermedia by visiting different StorActors,

the InfoActor, corresponding to the currently visited node, gathers the local

and temporary user perspective in the acquaintances inInfo, brInfo, cnInfo and

msInfo; these acquaintances are respectively the result of the tracing activi-

ties locally performed by the scripts trace-in, trace-br, trace-cn, and trace-ms.

These four typologies of information, together with the corresponding trust

values inTrust, brTrust, cnTrust and msTrust, are sent to the UserActor. The

UserActor collects this information asynchronously and establish when and

how the user model changes. The application of these changes adapts the

local InfoActor knowledge to the new user perspective. This updating con-

sists in modifying the local acquaintances inTrust, brTrust, cnTrust and msTrust

in order to dynamically vary the relevance of the corresponding InfoActor

observations. Let s be the suggestion inInfo (or respectively brInfo cnInfo

msInfo), provided by the InfoActor to the UserActor and let p be the sug-

gestion chosen by the UserActor and considered as relevant amongst all the

suggestions received by all the activated InfoActors. The formula used to com-

pute the new trust value inTrust (or respectively brTrust, cnTrust and msTrust)

will be:

trust = clamp(0, 1, trust+ δ?s,p(γ
?trust?(1-wTrust))) . (1)

where

δs,p =

{
+1 if suggestion s = UserActor preference p

−1 if suggestion s 6= UserActor preference p

and the trust maintains the old trust level in inTrust (or respectively in brTrust

cnTrust msTrust) of the InfoActor, wTrust represents the corresponding value

in wInTrust (or respectively in wBrTrust, wCnTrust and wMsTrust) provided
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by the UserActor, γ is the trust learning rate, and the function clamp(0, 1, v)

ensures that the value of v always lies in (0, 1].

The rationale behind the modelling above is the following. Formula (1) works

in such a way as to increase (or decrease) the trust related to the local slots

inInfo, brInfo, cnInfo and msInfo, when the information contained in them,

corresponding to the suggestions sent to the UserActor previously, has (or

has not) been effectively taken into account by the UserActor as meaningful

to establish the current user behaviour. The amount the trust value rises

and falls depends on the confidence of the other InfoActors in the sugges-

tion provided by the current InfoActor. That is, if the suggestion of the

InfoActor is not taken into account by the UserActor, and the average trust

(wTrust) expressed by the other InfoActors is high, then the trust value

should be penalized less heavily than an incorrect suggestion but with a lower

average trust value. This inverse ratio is captured by the value (1-wTrust).

The formula to update the trust values of the single InfoActors constitutes

the more relevant part of the script update-trust.

5.3. UserActors

In contrast to the locality of user observation made by the InfoActors, the UserActor

is designed to reason globally about the user. In fact, its main goal is to infer new,

general user preferences or needs in order to communicate them to the InfoActors

which, in their turn, will be responsible for customising such general information in

specific local targets. The UserActor is hence a collector-like actor, since it must

organise the knowledge provided by InfoActor collections. The general mechanism

used by the UserActor to deduce meaningful user changes is based on the concept

that the user actions, observed by the InfoActors, modify a global trust level asso-

ciated with the preferences/needs of the user. In this way, whenever the trust of

a certain feature exceeds a meta-net threshold, then the corresponding feature is

elected as a global user preference. Figure 12 shows the ESAL description of the

UserActor class.

Considering the code of Fig. 12, we have the following semantics of the local

acquaintances:

• pastInfos. This slot addresses the InfoActors that collaborate with the User-

Actor, providing it with observations on the user activity.

• futureInfos. This slot addresses the InfoActor collection interested in updating

the user model; in particular, it is defined as the union of the current active

InfoActors and their frontier extended by means of an iterative process k times

(where k is a natural number dependent to the application).

• inInfo/brInfo/cnInfo/msInfo. These slots receive the different local user actions

detected by the pastInfos.

• inTrust/brTrust/cnTrust/msTrust. These slots are used to store the sequence

of trust values corresponding to the previous slots.
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(Def UserActor

{Actor}

(pastInfos futureInfos

inInfo inTrust wInTrust gwInTrust gInHints

brInfo brTrust wBrTrust gwBrTrust gBrHints

cnInfo cnTrust wCnTrust gwCnTrust gCnHints

msInfo msTrust wMsTrust gwMsTrust gMsHints)

[(return-wTrust ...), (return-gwTrust ...), (propagate-changes ...), ...] )

Fig. 12. UserActor class definition.

• wInTrust/wBrTrust/wCnTrust/wMsTrust. These slots contain, in correspon-

dence to the previous data, the normalised weighted sum of the related trust

values.

• gwInTrust/gwBrTrust/gwCnTrust/gwMsTrust. These slots contain the globally

highest trust values selected from those contained in the previous slots. These

values determine the UserActor choice of the current user view.

• gInHints/gBrHints/gCnHints/gMsHints. These slots dynamically maintain the

user features corresponding to the previous highest trust values. They rep-

resent the hints (with the highest probability of interest) provided by the

UserActor to the futureInfos InfoActors. These slots offer the current global

user view.

As previously discussed, the InfoActors in a parallel and asynchronous way re-

turn to the UserActor local user views (the acquaintances inInfo, brInfo, cnInfo and

msInfo) together with the related trust values (inTrust, brTrust, cnTrust and msTrust).

The UserActor processes such information starting from the values contained in in-

Trust and obtains for each component inside inTrust a normalised weighted sum

(wInTrust) by means of the execution of the script return-wTrust, according to the

following general formula;

wTrust(x) =

∑n
i=1 witi∑n
i=1wi

(2)

where x may be one of the components in inTrust, ti is the trust value related to the

InfoActor that has sent the suggestion x, and wi is the related weight given to the

suggestion by the UserActor. Different criteria may be adopted to define the weight-

ing strategy, such as time-based weighting or topic-based weighting. The highest
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trust value determines the relevant user preference to take into consideration. If this

value is greater than the corresponding (current) meta-net threshold, i.e. gwInTrust,

then this slot is updated with the new higher value. This corresponds to a new cur-

rent meta-net threshold. This action is repeated for the remaining brTrust, cnTrust

and msTrust slots. At the end of this execution, the UserActor has terminated its

activity of deducing meaningful user changes and can propagates the changes to the

interested InfoActors. Figure 13 shows this process.

U se r

C o lle c to r H y p L in k

p a s tIn fo p a s tIn fo
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C o lle c to rTe le o Te le o Te le o Te le o

fu tu re In fo

H y p A cto r

fu tu re In fo

� � � � � � � � � � � � � � � � � �

Fig. 13. Distributed update of the user model in multicasing.

The new user preferences (the slots gInHints, gBrHints, gCnHints and gMsHints)

are sent to the interested InfoActors futureInfos. Now, if a new threshold is estab-

lished, then it is necessary to update the local, distributed trusts contained in the

sender InfoActors. This is done by sending the multicasting message update-trust

to each InfoActor specified in pastInfos. propagate-changes is the script responsible

for the described propagation of preferences and trusts.

6. Related Works

The actor-based model presented here modifies the way in which complex software

systems, such as hypermedia, are generally conceived. The main difference com-

pared to other significant proposals [8,9,21] is in the distribution of not only data,

but also of control, and in the fundamental role of communication. As a result, the

storage and run-time layers are composed of active entities, that embody enough

knowledge to solve global goals by cooperative activities.

The role played by the HyDe actors is similar to that defined for the TAO entities

[22], even though our architectures stresses in depth the issues of the communication

and of the decentralization of the tasks and duties.

This section has been structured in two subsections which focused respectively

on the storage and runtime layers of HyDe.

6.1. Storage layer

Some important hypermedia issues, which are hard problems to solve in Dexter [14],
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are successfully addressed in our framework:

• Composites

The Collectors provide the visualisation and browsing of configurations. In

our approach, they are dynamic objects, multi-versioned (in contrast to Dex-

ter) and they are able, thanks to the strong interconnectivity realised by the

communication, to support important functions, such as information retrieval

and the WhoIncludesMe? [14].

• Link service

As pointed out by Davis [23], hypermedia systems may be classified by how

they store both links and the information indicating their destination nodes

and which areas within a node’s content are “hotspots”.

In our approach the requested information is both embedded in the node

(HypActor or Collector) and stored externally (in the HypLink). In this way,

we gain several advantages:

(a) StorActors are self-contained objects;

(b) the dangling link is a natural instance of a generic link;

(c) the presence of autonomous HypLinks permits the building of tools which

navigate the links as well as tools to identify dangling links.

(d) the users may select in which of a number of alternative webs to store a

particular link;

(e) thanks to communication and version control, changes on StorActors do

not cause inconsistency in the data and bindings.

• Version Control
Many hypermedia models [8,9] do not have the notion of configuration; this

seems to be a strong restriction, since the basic principle of the hypermedia is

the continuous evolution of its data. Few systems manage the version control

[24–26]. Our approach realises in a uniform way version control on StorActors

and offers a model which adheres to important trends [27].

• Configuration as context

The concept of configuration is not time-restricted: more properly, the config-

uration corresponds to a context [13], characterised by a number of different

features, among them, time.

• Alternative configurations

Our model supports an easy management of alternative configurations, an

important aspect of the version control [25,28]). In fact, they can be restored

immediately since each past configuration is maintained by the system as a

collection of (temporarily) suspended entities.
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6.2. Run-time layer

Non-adaptive hypermedia system provides the same hypermedia pages and the

same set of links to all users, even though different users need different information.

This restriction is overcome by a few hypermedia models [29–32] but adaptive hy-

permedia systems are recently attracting considerable attention from the research

community, as shown by a growing body of literature [33] and the existence of active

research groups [34]. Of course, if a model of hypermedia is to be general, then it

must support adaptivity.

• Adaptive presentation and navigation

Adaptivity can be realised on two levels: adaptive presentation and adaptive

navigation. Hypadapter [35] is one of the few systems that supports these two

different ways of adaptivity. In our model, these two types of adaptivity are

managed by the adaptive level and explicitly displayed by the teleological level;

in particular, the suggestions provided by the InfoActors to the TeleoActors

allow them to realise adaptive presentation and adaptive navigation. We point

out that our process of instantiation of a component is a generalization of that

proposed by [9]. In fact, it is not simply a copy of the component content,

but a customised view of that component.

• Generality of the architecture

The work of [30,33,36] emphasizes the need to design a general architecture

for adaptive hypermedia, leaving aside particular strategies: the research di-

rection is toward a kind of shell which simplifies creating adaptive hypermedia

systems for different applications. Our model offers an interesting proposal in

this sense: it is very general, independent from the usable adaptive strategies,

and principally is not affected by the underlying storage layer.

• Dynamic valuation of the user

The decentralisation and the communication are the basis for the high reac-

tivity of our model, that is not limited to stereotype-based [29,37] or overlay-

based schemes [38,39]. The concurrent interaction provides the continuous

update of the actor knowledge in order to customise it to individual user

habits and preferences. The threshold-based mechanism [40] makes possible

the evaluation of the user behaviour changes.

7. Conclusions

In this paper we have modelled a complete hypermedia framework using the ac-

tor model as efficient paradigm of high-level distributed, concurrent programming.

Actor-based languages may be viewed as an extension of script-based languages to-

wards concurrent computing. This extension increases the benefits derived from the

script languages, recently used as target tools for advanced hypermedia/multimedia

architectures [16], in supporting efficient interaction with the user. The actor choice
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is due to the necessity to handle a simple, essential model of distributed comput-

ing, in order to highlight, as much as possible, the most important aspects of data

and communication abstraction at the basis of a computational architecture rather

than exploring new models of human reasoning. Using an extended actor-model,

we have described, in a formal way, the details of our architecture; using a con-

current extension of CLOS, different prototypes have been realised [20,41,42]. This

practice allowed us to learn much on the high-level distributed concurrent design

methodology and to stabilise our model. This is confirmed by the fact that “hard”

enhancements/extensions, such as a first proposal for CSCW environment, have

been possible without reformulating the basic platform design concepts [20].

An going research activity consists in porting our distributed architecture on the

WWW. The WWW in its current form does not support distributed applications in

an easy and direct way. This lack has stimulated different proposals (see Web∗ [43],

JOE [44], PageSpaces [2]). These efforts are characterised by a common feature: the

role of Java as a middle- ware platform fully integrated in current Web technologies

in order to allow really distributed applications. We intend to investigate this issue

by considering recent directions that have been proposed as new guide-lines to

develop interactive multimedia application for the Web [45].
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