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Active distributed framework for adaptive hypermedia
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Navigation through large hypermedia information spaces is complex and is an important
application area for adaptive hypermedia systems. User navigation can be best supported
when the design of the hypermedia system is embedded in an evolutionary process model
that takes into account the decentralization of data sources and the variety of users. The
paper deals with distributed frameworks for open hypermedia systems; it focuses on the
design work done to make adaptive an existing actor-based architecture for hypermedia.
The approach follows the initial design approach used in the definition of the hypermedia
platform, i.e. the actor-based computational model. We present in detail the new actor
classes and the cooperative schemes which allow adaptation within the resulting architec-
ture. ( 1997 Academic Press Limited
1. Introduction

The explosion of the World Wide Web (WWW) (Berners-Lee, Cailiau, Luotonen, Nielsen
& Secret, 1994) platform, in which different media interact, has shown the potential of
hypermedia to provide rapid and effective access to information. This situation explains,
on the one hand, the race to create new geographically distributed knowledge sources, and,
on the other, the challenge to increase the intelligence of the information providers.

The achievement of this latter goal depends crucially on the ability to define useful
adaptive interfaces. Only recently, the research community has been investigating the
problems of adaptive hypermedia systems (AHSs). Research has been directed at prop-
osing metrics evaluating the user’s cognitive state (Mathé & Chen, 1996), in defining
different forms of adaptation (presentation and navigation) (Brusilovsky, 1966), in using
normative user models [over-lay (De Rosis, De Carolis & Pizzutilo, 1993) and stereotype
(Rich, 1989; Kaplan, Fenwick & Chen, 1993) models or the combination of the last two
(Kobsa, Müller & Nill, 1996; Vassileva, 1996)]. Work has also been directed at prescrip-
tive user models (Kobsa, 1991), to understand the problems of orientation and compre-
hension (Thüring, Hannemann & Haake, 1995) and implement user-oriented querying
assistance (Aberer, Lkas & Furtado, 1994). Work remains to be done, however, in
defining effective and general architectures to support the above-mentioned approaches.
The usual trend is to separate the user modelling package from the hypermedia environ-
ment (Kobsa et al., 1996), centralizing the intelligence of the user model in a unique
specialized module.

In the past, the team responsible for defining appropriate interfacing systems in
a company has usually taken into account the following two fundamental aspects.

f The variety of the media used to access information.
f The model of the database used in the company.
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At present, the strict boundaries of the ‘‘local’’ company have disappeared in the search
for global information management. The freedom of navigating in a vast and evolving
domain affects profoundly the user’s exploration of non-traditional data models. The
existence of a global information infrastructure complicates the problem of adaptive
interfaces, and the distribution and variety of the final system must be taken into account
at the design level. In this new situation, in order to simplify the creation of adaptive
hypermedia systems for different applications, we need to consider alternatives to
the traditional, centralized design methodologies and consider new proposals in which
data and services are decentralized and a unique, general ‘‘shell’’ is used (Kobsa et al.,
1996).

We present here an experimental, general, distributed user-model architecture
for distributed hypermedia-based information systems. It is general in the sense that
it allows the implementation of different user models. It is completely distributed
and requires the hypermedia model and the user interface to be strongly coupled in
order to obtain an effective user interface. The framework is viewed as an ‘‘open
system’’ (Hewitt, 1991), i.e. an environment in which a continual flow of new informa-
tion originates from numerous actors (Agha, 1986). Actors exploit large-scale
concurrency in that they perform functions (scripts) concurrently but own local data
(acquaintances). The decentralization of knowledge and tasks does not prevent the
actors from managing global actions; in fact, designed cooperative and collaborative
duties may be used to coordinate their local actions. Actors communicate via message-
passing.

The paper is organized as follows. Section 2 discusses our motivation, pointing out the
role of the object-oriented concurrent programming paradigm as a key issue for the
design of distributed interactive systems. The computational model used to implement
the high-level open hypermedia architecture is briefly described. Beginning from this
brief description, we present the storage layer in Section 3. The extension of the architec-
ture for adaptive interaction is then discussed in Section 4. The software platform and
some practical experiments are given in Section 5, followed by related work in Section 6.
Conclusions and future ideas are outlined in Section 7.

2. Software design methodologies for distributed interactive systems

One of the main objectives of software engineering is to develop embedded systems that
provide interactive services over time that adapt to clients’ needs. Object-oriented
technology radically changes the traditional software engineering perspective, both in
formal and practical aspects (Wegner, 1995a). This evolution transforms ‘‘classical’’
closed Turing machines into open systems ‘‘that express on-line interaction with external
processes as well as the passage of time’’ (Wegner, 1995b).

Structured programming is based on software development through progressive
refinements. Object-oriented programming follows this discipline but strengthens the
abstraction level through a stronger use of abstract data types and information hiding
concepts. In the last decade, several programming paradigms suitable for concurrent
programming have been proposed but object-oriented concurrent programming requires
a less radical break from the ‘‘conventional’’ programmer’s mentality. Modelling soft-
ware as a collection of autonomous cooperative agents is a natural evolution of
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object-level languages. In fact, an object-oriented program is already conceived in terms
of autonomous objects which could be executed in parallel. However, the ‘‘classical’’
notion of object is too vague to support large-scale concurrency because it limits the
amount of parallelism available.

The actor model (Agha, 1986; Agha & Hewitt, 1988) satisfies the double requirements
of high-level programming and efficiency. Actors combine object-oriented and functional
programming to make it easier to use the concurrency. Briefly, the actor model can be
described as follows.

f The universe contains computational agents, called actors.
f Actors perform computation through asynchronous, point-to-point message passing.
f Each actor is defined by its state, mail queue and behaviour.
f An actor’s state is defined by its internal data called acquaintances.
f An actor reacts to the external environment by executing its procedural skills, called

scripts.

The actor model is the basis of object-oriented concurrent programming, one of the
most important implementation paradigms in distributed artificial intelligence (DAI)
level architectures (Briot & Gasser, 1992). Furthermore, actor-based languages are
computationally practical; they can be efficiently compiled (Kim & Agha, 1992) and
implemented realistically on distributed multiprocessor architectures (Agha, Houck
& Panwar, 1992).

In Figure 1 we give a graphical representation of our actor-based computational
model.

Each actor is represented as a frame composed of two parts, the data part
(acquaintances) and the functional part (scripts). Each actor has a class name. Two
different asynchronous communication strategies are supported.

f Point-to-point. This enables the communication between a sender/receiver couple.
This protocol is depicted in Figure 1 by a single arrow crossing a rectangle in which the
name of the message (that is a script name) is indicated. The script name identifies the
task that will be accomplished by the receiver.

f Multicast. This enables the communication between a sender and a collection of
receivers. This kind of message is represented by a set of arrows spanning in the
direction of the addressed actors. The multicast message is an extension of the
‘‘classical’’ actor model currently adopted in some concurrent object-oriented lan-
guages (OOCP, 1993) to improve communication.
FIGURE 1. The actors and message types in our actor-based computational model.
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3. Actor-based hypermedia model: storage layer

From a classical standpoint, a hypermedia (Nielsen, 1996) is a directed graph, composed
of nodes containing basic data information and links which define the relationships
between nodes. Users navigate from node to node by following links. Nodes can be either
atomic or composite. The former contain data, text, graphics, sounds, images, whereas
the latter provide alternative connections between the nodes or views. In either case, both
atomic and composites nodes are passive objects in that they do not perform auto-
nomous actions. In our model, we enrich the local competence of the nodes in such a way
as to transform them into active objects, provided with enough knowledge to
process internal as well as external tasks.

Each node is identified by an actor. An actor embodies passive information in its
acquaintances, which are slots containing data. On receiving a stimulus, the actor may
modify its internal status or interact with the external environment; these actions are
performed by scripts, which are local functions associated with that actor. The social
activity of an actor, i.e. the capability to establish collaborative goals, is possible because
of the ability to contact ‘‘neighbour’’ entities.

In our model, we extend the usual point-to-point communication scheme of the pure
actor model to allow multicasting and broadcasting message passing. This improves the
flexibility and efficiency of distributed computation. Each actor, however, has only local
knowledge and global tasks are achieved through collaborative cooperation. By decen-
tralizing data and control, we achieve efficient task distribution management and we
enforce the locality of the basic resources and, consequently, their use.

Figure 2 shows the storage layer of our model; this layer represents the structure of the
hypermedia provided initially by its author. The main purpose of the storage layer is to
manage the persistent storable objects that as a whole constitute the hypermedia. This
layer is composed by two actor-based levels, as shown in Figure 2.

(1) Structural level. This first level contains the HypActors, which represent the
‘‘atomic’’ units of hypermedia information similar to well-known objects, such as
cards (Halasz, 1988), frames (Garzotto et al., 1993) and slices (Isakowitz, Stohr &
Balasubramanian, 1995). An important deviation from more traditional approaches is
the dynamic nature of the HypActors. Conventional hypermedia objects are essentially
data containers that delegate their operative functionality (e.g. user browsing) to external
FIGURE 2. Our storage layer.
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entities. This limitation is overcome in our model because each actor owns behavioural
responsibility for itself and for the other members of the HypActor community.

(2) Meta level. This second level provides structure to the hypermedia model and the
actors which compose the meta level are named Collectors. This level is necessary to
allow the direct management and manipulation of HypActor collections. They allow
access to non-linked hypermedia sections, provide a dynamic structuring mechanism
based on the recursive composition of atomic (HypActors) and composite (Collectors)
components (Willrich, Sénac, Diaz & de Saqui-Sannes, 1996) and maintain materialized
views of the hypermedia, resulting, e.g. from a search or a query over node attributes.
Together, the HypActors and the Collectors represent the most general, complete user
perspective of the hypermedia.

In order to concentrate on the architecture, and specifically on the adaptive features
of the model, in the following we do not discuss the problems associated with the
effective representation of content embedded in complex multimedia data (tackled
in Dattolo & Loia, 1996b). In the rest of the paper, we will use the term ‘‘StorActor’’
in order to indicate a generic actor belonging to the storage layer (HypActor or
Collector).

3.1. THE HYPACTOR

Figure 3 illustrates a HypActor entity.
FIGURE 3. The HypActor class description.
The acquaintance part contains slots text, picture, sound to store textual,
graphical and acoustic media information, while the slots from and to are used to
contain the outgoing and incoming StorActors. Other slots, such as configuration,
are used for configuration management. These slots allow the HypActor to fulfil the role
of an atomic node in a traditional hypermedia. The HypActor differs from its traditional
counterpart in its ability to perform actions by executing scripts. An example of such an
action is versioning, which is carried out by the HypActor itself (discussed in Dattolo
& Loia, 1995a, 1996b). Freeze YourSelf is used to freeze the content of a node when
a new version of it is created, and updateConfig is used to update the node
parameters related to a new configuration.

3.2. THE COLLECTOR

The Collectors provide a means of capturing non-link-based organizations of informa-
tion, making structuring beyond pure networks an explicit part of hypermedia function-
ality. An author can use collections to allow a user to extract a portion of the hypermedia
or to provide various browsing strategies. Collectors improve the modularity and, thus,
reusability of the hypermedia since they allow data to be maintained separately. They
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can also encapsulate other StorActors to address them more efficiently. An important
acquaintance is collection; it contains the set of StorActor addresses on which the
Collector exerts its role management and manipulation. For example, if the user activity
produces a new configuration for a set of StorActors, the slot collection will contain
their addresses. The task of creating a new configuration is carried out from a Collector,
using the script createConfig, while the restoration of an old configuration is
performed by the script searchConfig.

4. Actor-based hypermedia model: run-time layer

In this section we introduce the run-time layer which represents the part of our
framework devoted to supporting the adaptive presentation of the storage components
to the user. Figure 5 shows the general architecture; the run-time layer is identified by the
teleological and the adaptive levels.

¹eleological level. This level provides all the possible, dynamic user perspectives on the
hypermedia; it is the interface between the data/services provided by a certain StorActor
and the user. This level is composed of ¹eleoActors. As shown in Figure 5, each TeleoActor
knows a unique StorActor and specializes its activity according to the evolution of the
preferences shown by the user during browsing. The knowledge necessary to shape the
functionality of the StorActor is obtained through cooperation with the adaptive level.

Adaptive level. This level contains the InfoActors and the ºserActors. The InfoActors
work as independent monitors of user behaviour observing human actions on each single
hypermedia node. For each StorActor there exists a unique InfoActor associated with it.
In this way, we have distributed and local user monitoring. The InfoActors learn new
user habits and communicate this dynamic knowledge to the corresponding TeleoActor.

Each user is associated with a unique UserActor (see Figure 5) to coordinate the
InfoActor reports and activities. The InfoActors inform the UserActor about all the
recorded observations. This is done in a parallel and asynchronous way. The UserActor
collects these different user perspectives and may thus recognize a new relevant user
state. In this case, the UserActor sends this state update to selected InfoActors in order to
permit them to acquire the new user behaviour and to update the related documentation.

It is clear that frequent and intensive cooperation activities among the different actor
classes are required:

Primitive collaboration: StorActors8StorActors. The structural and behavioural
part of HypActors and Collectors establish a precise view of the hypermedia. At this level
the cooperation activity provides ‘‘basic tasks’’ to do with the overall functioning of the
hypermedia, such as configuration management (Dattolo & Loia, 1996b) or the search
for a configuration (Dattolo & Loia, 1996a). These and other such tasks depend on
information stored in the StorActor acquaintances, such as the slots from and to that
provide a link structure between objects.



FIGURE 5. The hypermedia architecture.
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¹eleological collaboration: StorActor8¹eleoActor, InfoActorN¹eleoActor. The
teleological level is the bridge between the users’ goals and the hypermedia architecture.
The interaction of the user with each hypermedia node is determined by the correspond-
ing TeleoActor. Each TeleoActor is provided with a number of interface filters. Each
filter modifies the functionality of the relative StorActor by pruning or adding views. The
decision as to which filter to employ is taken by the TeleoActor using knowledge
acquired from the user’s behaviour. This knowledge is provided by the InfoActor that
knows a user’s particular habits. The collaboration activity is thus between StorActor—
TeleoActor and InfoActor—TeleoActor. Figure 6 illustrates the teleological collaboration.

In Figure 6 the TeleoActor decides to activate the index-based interface from the three
available interfaces.

Adaptive collaboration: StorActor8InfoActor, InfoActorNºserActor, ºserActorN
InfoActors. This collaboration involves three different tasks.

The first is the acquisition of local knowledge about the user. This task is achieved
through a collaboration between the StorActor and its InfoActor. The InfoActor follows
all the user activity on the current StorActor and keeps a trace of the user actions. This
initial knowledge is used by the TeleoActor to apply a first local filtering.
FIGURE 6. The teleological collaboration determines the current user view on each StorActor.



FIGURE 7. Asynchronous information flow from InfoActors to UserActor.
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In the second task, the InfoActors forward to the UserActor the most significant
observations on the user activity. The UserActor collects this information asynchron-
ously so that during user monitoring the InfoActors and the UserActor work in an
independent way. Figure 7 illustrates a simple example of our mechanism. The user
navigates through the hypermedia by visiting different StorActors; the bold arrows show
the navigation path. At each visit, the InfoActor, corresponding to the currently visited
StorActor, gathers user habits, infers preferences and sends these to the UserActor.
This result is a hypothesis (with a degree of confidence or trust) about a user’s behaviour.
All this is done in an asynchronous way because each InfoActor is completely auton-
omous.

In the third task the UserActor changes the current user model. The UserActor owns
local duties that allows it to establish when and how the user model should change. To
make a change, the UserActor informs the InfoActors about the need to update their user
perspective. This action is performed using concurrent message passing in order to
improve the adaptivity of the system. As stated previously, once an InfoActor acknow-
ledges this message, it communicates to its TeleoActor the necessity to modify the user
view of the corresponding StorActor. This knowledge allows each TeleoActor to filter
data and services on the corresponding StorActor, so that the user update occurs in
a deeper way that takes into account not only the local actions performed on the single
node, but also the user’s behaviour throughout the browsing. Figure 8 illustrates user-
model updating. In this figure, the UserActor first sends, in multicast, the message
updateView to the interested InfoActors. These are the so-called futureInfos.† The
message contains the current global user-model updates. Each InfoActor that receives
this model specializes it to forward a local user model to the related TeleoActor. To
enable InfoActors to update their degree of trust (confidence) about a given user
preference, a second kind of message is sent by the UserActor to those InfoActors
(identified with the name pastInfos) that have generated a hypothesis about the
current user preferences. This is done using the script update Trust.

The following sections describe in more detail the TeleoActor, InfoActor and
UserActor entities.
† In our approach, a topological identification of this collection is obtained as the union of the currently
active InfoActors and their close neighbours, extended by means of a recursive process k times (where k is
a natural number dependent on the application).
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4.1. THE TELEOACTOR

The TeleoActors act as adaptive interface between the storage layer released by the
hypermedia author and the user. These actors adapt the hypermedia functionality
according to user behaviour. Each TeleoActor provides a given view of a corresponding
StorActor which may be changed by adding or deleting data and services to that
StorActor. Figure 9 illustrates a TeleoActor.

It is important to note that in the data part of the TeleoActor we have the link to the
corresponding StorActor node. Whenever a StorActor instance is created, an instance of
a TeleoActor is created automatically, and coupled with it via the local resource storac
that contains the address of the StorActor. The same mechanism is applied to couple an
instance of a TeleoActor with its corresponding InfoActor, identified by the slot info.
All the services that may be used in the interaction between the user and the system are
contained in the local resource services. This resource may be viewed as a frame
containing knowledge.

When a TeleoActor is created, the complete list of services is present. This list may be
altered by the TeleoActor during the interaction between the user and the system on the
basis of information received from its InfoActor. The local resources inSuggestion,
brSuggestion and cnSuggestion collect the user behaviour changes, in terms of
three basic action categories: interface, browsing and content (detailed in Section 4.2).
These resources are updated by the InfoActor info; the current, last user preferences
are contained in the slot image.
FIGURE 9. The TeleoActor class description.
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4.2. THE INFOACTOR

Each InfoActor contains enough knowledge to recognize user actions. For good control
and understanding of the user behaviour, the knowledge will depend on the domain
content and is provided by the system designer. Figure 10 illustrates an InfoActor. As
discussed before, each InfoActor knows a unique StorActor, a unique TeleoActor and
the related UserActor, contained, respectively, in the slots storac, teleo and
userac. The InfoActor’s domain knowledge is stored in the acquaintance domain. The
user monitoring is contained in the four resources inInfo, brInfo, cnInfo and
msInfo; these objects can be viewed as frames containing information to identify the
user actions, in terms of four basic categories: interface, browsing, content and measure-
ments. Each of these classes depicts the local user activities. For instance, msInfo
contains a sequence of numbers that quantify some user actions performed on the
corresponding StorActor as follows.

f The number of visits by the user.
f The average time spent during the visits.
f The number of user help activations.

The user perspective evolves because of the cooperation with the UserActor. Essentially,
the InfoActor establishes communication schemes with its TeleoActor and the User-
Actor. The messages from the InfoActor to its TeleoActor teleo enable the latter to be
updated at run time to respond to recent user needs. The local InfoActor’s acquaintances
provide useful information about the changing user behaviour. inSuggestion speci-
fies the last user-interface choices, brSuggestion represents the user browsing modali-
ties and cnSuggestion represents the user content expectations. We note that
inSuggestion details those aspects which in Dexter (Halasz & Schwartz, 1994) are
stored in the Presentation Specification area of a component. The second communication
activity is achieved through collaboration with the UserActor; here we discuss the
messages from InfoActor to UserActor. The InfoActor possesses a local and temporary
user perspective in the acquaintances inInfo, brInfo, cnInfo and msInfo, which
are, respectively, the result of the tracing activities performed locally by the scripts
traceIn, traceBr, traceCn and traceMs. These four typologies of information,
together with the corresponding trust values inTrust, brTrust, cnTrust and
msTrust are sent to the UserActor. As we will see in the next section, the UserActor
collects this information asynchronously and establishes when and how the user model
should change. The application of these changes induces the local InfoActor knowledge
to adapt to the new user perspective. This updating consists of modifying the local
FIGURE 10. The InfoActor class description.
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acquaintances inTrust, brTrust, cnTrust and msTrust in order to vary the
relevance of the corresponding InfoActor observations. The rule used to change these
values is similar to that used by Lashkari, Metral and Maes (1994). Let s be the
suggestion inInfo (or, respectively, brInfo cnInfo msInfo), provided by the
InfoActor to the UserActor, and let p be the suggestion chosen by the UserActor and
considered as relevant amongst all the suggestions received by the activated InfoActors.
The formula used to compute the new trust values in inTrust (or respectively in
brTrust, cnTrust and msTrust) is

trust"clamp(0, 1, trust#d
s,p * (c * trust * (1!w¹rust))), (1)

where

d
s,p

"G
#1

!1

if suggestion s"UserActor preference p,

if suggestion sOUserActor preference p.

The second and third trust are the last trust levels maintained in inTrust (or,
respectively, in brTrust, cnTrust and msTrust) of the InfoActor, w¹rust represents
the corresponding value in wInTrust (or, respectively, in wBrTrust, wCn Trust and
wMsTrust) provided by the UserActor, c is the trust learning rate and the function
clamp(0, 1, v) ensures that the value of v always lies in (0, 1).

Formula 1 raises (lowers) the trusts related to the four local slots inInfo, brInfo,
cnInfo and msInfo, when the information contained in them, corresponding to the
suggestions sent previously to the UserActor, has been (has not been) effectively taken
into account by the UserActor as meaningful for a new user habit. The amount by which
the trust value rises or falls depends on the confidence of the other InfoActors in the
suggestion provided by the current InfoActor. That is, if the suggestion of the InfoActor
is not taken into account by the UserActor, and the average trust (w¹rust) expressed by
the other InfoActors is high, then the trust value should be penalized less heavily than
one from an incorrect suggestion but with a lower average trust value. This inverse ratio
is captured by the value (1!w¹rust). The formula to update the trust values of the single
InfoActors represents the more important part of the script update Trust.

4.3. THE USERACTOR

The UserActor organizes collections of InfoActors and the knowledge they provide. For
this reason, whereas the goal of the InfoActors is to observe the local user actions, the
UserActor studies such actions from a global standpoint in order to infer new user
preferences. As each user preference is inferred, the UserActor delegates the InfoActors to
consider such preferences in order to customize the TeleoActors for the new user
preferences and habits. The involved InfoActors (futureInfos) are identified by their
membership of the ‘‘focus of attention’’ area. This region contains all those InfoActors
that are interested in this change. Various criteria (topological, node priority, etc.) may be
adopted to define this area.

The cooperation activity that allows an adaptive evolution of the hypermedia is
obtained by a continuous, asynchronous information flow between the InfoActors
pastInfos and the UserActor. More in detail, the activated InfoActors in a parallel
and asynchronous way return to the UserActor local user views (the slots inInfo,
brInfo, cnInfo and msInfo) together with the related trust values (inTrust,



FIGURE 11. The UserActor class description.
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brTrust, cnTrust and msTrust). The UserActor evaluates this information starting
from the values contained in inTrust and obtains for each component inside inTrust
a normalized weighted sum (wInTrust) by means of the execution of the script
returnTrustWsum , according to the following general formula:

w¹rust(x)"
+n

i/1
w

i
t
i

+n
i/1

w
i

, (2)

where x may be one of the components in inTrust, t
i
is the trust value related to the

InfoActor that has sent the suggestion x, and w
i

is the related weight given by the
UserActor to the suggestion. Different criteria may be adopted to define the weighting
strategy, such as time-based weighting or topic-based weighting. The highest trust sum
determines the user preference taken into account. If this value is greater than the
corresponding (current) meta-net threshold contained in gwInTrust, then this slot is
updated with the new higher value. This corresponds to a new current meta-net
threshold. This action is repeated for the remaining brTrust, cnTrust and msTrust
slots. At the end of this execution, the UserActor has finished deducing meaningful user
changes and can communicate them (the slots gInHints, gBrHints, gCnHints and
gMsHints) to the interested InfoActors futureInfos (see Figure 11). This action is
performed by the script propagateChanges. This script uses the multicast message
passing protocol in order to gain concurrency in informing the InfoActor about the
user-model changes. At its execution, a distributed, parallel update of the local user
models takes placse, as shown in Figure 8. A local treatment of the update is delegated
to each InfoActor belonging to futureInfos through the activation of the script
updateView, while the update of InfoActor trust value is delegated to each InfoActor
belonging to pastInfos through the activation of the script update Trust.

5. Experimentation

Here we describe our experiments on a hypermedia environment designed to support
logic object-oriented programming in OPLA (Loia & Quaggetto, 1996), a hybrid
language developed from Prolog (Clocksin & Mellish, 1981) and CLOS (Bobrow,
DeMichiel, Gabriel, Kiczales, Moon & Keene, 1988). We are not concerned with OPLA
in itself but in the role played by our adaptive framework as an efficient user recognizer
and dynamic user—machine interface model. We modified the ‘‘traditional’’ OPLA
hypermedia programming environment, named Blue (Loia & Quaggetto, 1993b), using
the new distributed model formalized in Dattolo and Loia (1996b) to obtain the
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distributed version of Blue, named DiBlue (Dattolo & Loia, 1996a). We then studied the
effects of enhancing the system with the adaptive model described in this paper. The
results are considered encouraging.

Figure 12 depicts the software modules used in the realization of DiBlue.
The first layer (corresponding to the Blue realization) consists essentially of CLOS and

CLUE (Kimbrough & Lamott, 1990) (CLUE handles X-Windows objects). The exten-
sion of Blue towards a distributed framework has been made possible by using Hyper-
Clas, a concurrent, object-oriented programming language that supports the actor model
(see Dattolo & Loia, 1995a, 1996b).

We give a feel for some of the features of the DiBlue environment by considering
a scenario, illustrated in Figure 13, in which an OPLA user requires information about
the OPLA class PRODUCT.

The interface in Figure 13 is organized in such a way as to provide meaningful
information about the class, the superclasses and the subclasses, by specifying the data
part and the procedural part, according to the inheritance mode. These data are shown
in the upper pane, whereas the lower pane is dedicated to code editing. In particular, the
FIGURE 12. The DiBlue software platform.

FIGURE 13. The DiBlue interface.
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method loading in Figure 13 is highlighted when the user selects the method identifier
in the upper Direct Methods area. If e.g. the user were to select the documentation
mode (see top-level banner), different class-based information would be available in
DiBlue; in Figure 13, on the leftmost side, we show a Class Browser window, in which
a graph provides the inheritance ordering existing among the classes in relation with
PRODUCT. During a session, the user may choose different browsing facilities. The
Class Browser window may change by showing additional information, such as the
slots, the methods or both. The adaptivity of the system makes it possible to recognize
a user habit so that it can be provided automatically as a default mode. For the sake of
brevity, let us denote by A, B and C the user choices corresponding to three habits
regarding class browsing, viz. only classes (A), classes with methods (B) and classes with
slots (C). We suppose that the user starts the programming activity with the class
browsing mode A, shown in Figure 13, and that the UserActor local resources
gBrHints and gwBrTrust contain the following values:

gBrHints"(A,2), gwBrTrust"(0.66,2).

The first resource corresponds to the user’s preference for the current browsing mode,
which is mode (A) since this mode has obtained the highest trust value (0.66) from the
activated InfoActors. This trust value, which indicates the current relevant meta-net
threshold value, is contained in the second resource. Now, let us suppose that the
programmer’s browsing modifies the user preferences. The InfoActors are responsible for
detecting these meaningful operations and for conveying the new preferences to the
UserActor. A possible flow of information is shown in Figure 14, which shows the
following three important kinds of data.

f The identifiers of the InfoActors (Info1, Info1,2, Info8) that have sent messages
to the UserActor.

f The pairs (preference, trust) which are received from the UserActor.
f The minutes (starting from 0, i.e. the first clock signal after the last threshold fixing) in

which the UserActor receives the previous pairs.
FIGURE 14. The second part of the adaptive collaboration.
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Although other information is sent to the UserActor, we focus our attention only on the
values reported in Figure 14.

On receipt of each of the previous messages, the UserActor computes a global
estimation over the set of trust values corresponding to the current suggestion. This is
accomplished according to formula 2, in which, in our example, the weights are deter-
mined using a time-based strategy. Table 1 provides the data related to each message
sent to the UserActor.

From Table 1 it can be seen that as a function of the time expressed in minutes (first
column), the InfoActors (second column) send their suggestions (third column) with
the associated trust value (fourth column). The rightmost three columns show, for each
of three different browsing modes A, B or C, the trust values obtained according to
formula 2. Because the current choice was A (with meta-net threshold equal to 0.66),
this preference remains the current one until, after 3.5 mins, a new threshold overcomes
the previous limit. The graph in Figure 15 shows the progress of the trust functions
pointing out the user preference change at 3.5 min.
TABLE 1
Data exchanges between InfoActors and ºserActor. ºpon reception, a new meta-net

threshold is computed

Time InfoActor Suggestion Trust wBrTrust(A) wBrTrust(B) wBrTrust(C)

0 0.66 0 0
0.5 Info1 B 0.5 0.66 0.5 0
0.8 Info2 C 0.6 0.66 0.5 0.6
1.7 Info3 B 0.1 0.66 0.27338163 0.6
2 Info4 C 0.38 0.66 0.27338163 0.4753599
2.7 Info5 C 0.75 0.66 0.27338163 0.5847857
2.7 Info6 A 0.7 0.68584901 0.27338163 0.5847857
3 Info7 C 0.8 0.68584901 0.27338163 0.64908033
3.5 Info8 C 0.9 0.68584901 0.27338163 0.7119056

FIGURE 15. Three trust function plots; the function wBrSum(C) invokes the user preference change at time
3.5 min. wBrTrust(A); wBrTrust(B) and wBrTrust(C).
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This change provokes a decision, taken by the UserActor, to modify the user prefer-
ences, since now the two fundamental resources (gBrHints and gwBrTrust), asso-
ciated with the UserActor, have the following new values:

gBrHints"(C,2), gwBrTrust"(0.7119056,2).

For this reason, the UserActor activates the script propagateChanges, addressing
it to the futureInfos and the pastInfos collections. Figure 16, with data values
taken from our example, illustrates this action.

The InfoActors Info1,2, Info8 represent the resource pastInfos,
while the InfoActors Infok,2,Infoj are the futureInfos. The script
propagateChanges sends the following.

f To futureInfos, the new user preferences (in the most general form, the slots
gInHints, gBrHints, gCnHints and gMsHints) to each InfoActor in
futureInfos. In this way, these InfoActors can apply the local script updateView
and change the user preferences. In our example, the only resource interested in the
change is gBrHints, the browsing mode C. As a result of this update, the class
browsing mode changes from scenario A (leftmost window in Figure 13) to scenario
C (Figure 17).

The new habit C is now established and remains the ‘‘default’’ one until a different
user habit is necessary.

f To pastInfos, the slots gInHints, gwInTrust, inInfo, wInTrust,
gBrHints,2,wMsTrust necessary to update the local trust values; in our example,
just the slots related to the browsing activity, the pairs (gBrHints, gwBrTrust)
and (brInfo, wBrTrust) are sent, i.e. respectively, the values (C, 0.7119056) and
(A, 0.68584901), (B, 0.27338163). As a result of this update, the pastInfos compute
their new trust values, according to formula 1 given in Section 4.2, applying the local
script updateTrust. Table 2 contains the result of this computation, showing for
each InfoActor belonging to the collection pastInfos, the corresponding old and
new trust values, as a function of the last UserActor preference. In this example, the
trust learning rate c was fixed at 1 for maximum reactivity.
FIGURE 16. The third part of the adaptive collaboration.



FIGURE 17. An example of the browsing mode C.

TABLE 2
Old and new trust values for the specified

InfoActors

InfoActor Old trust New trust

Info1 0.5 0.13888889
Info2 0.6 0.77285664
Info3 0.1 0.02777778
Info4 0.38 0.48947587
Info5 0.75 0.9660708
Info6 0.7 0.48009431
Info7 0.8 1
Info8 0.9 1

ADAPTIVE HYPERMEDIA 621
6. Related work

AHSs have recently attracted considerable attention from the research community,
as shown by a growing body of literature (Brusilovsky, 1996) and the existence of
active research groups (Adaptive Hypertext & Hypermedia Web home page:
http://www.education.uts.edu.au/projects/ah/). Initially, AHS appeared as
an adaptive graphical interface able to support simple but frequent operations such as
undo/redo strategies, active help and predefined plans-of-actions schemes. With the
evolution of hypermedia models, and with the enormous diffusion of hypermedia
applications to users from different social and professional classes, there is now a strong
need for more efficient adaptive methods. Fortunately, the adaptive hypermedia com-
munity has benefitted from the research on user (typically student) modelling (Kobsa,
1993), especially in the field of artificial intelligence in education. The accomplishments in
this area have been extremely useful in solving the difficult task of acquiring user’s
knowledge but little attention has been paid to the study of possible implications for the
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hypermedia architecture. In the current work in this area, two issues are emphasized as
being relevant and underinvestigated.

f There is a need to design a general architecture for adaptive hypermedia. Leaving aside
particular strategies, the research direction (Kay, 1994; Brusilovsky, 1996; Kobsa et al.,
1996) is towards a kind of shell that simplifies the creation of adaptive hypermedia
systems for different applications.

f The relationship between AHS research and the actual dissemination of information
on distributed environments, as the WWW (Brusilovsky, 1996; Thomas & Fischer,
1996).

Our work is directed at these goals and it should not be considered as a new user
modelling method for hypermedia applications but a general, distributed, open actor-
based framework for adaptive hypermedia systems. With this specification in mind, our
approach differs from Kobsa et al. (1996), since our solution is not to conceive a ‘‘black
box’’ which can be connected to an external application; our model is embedded in the
hypermedia architecture and is difficult to ‘‘export’’ to hypermedia that do not share our
design architecture. Nevertheless, due to our design perspective, our proposal can
achieve the same level of abstraction and flexibility as can be achieved using black boxes.
Our actor-oriented design perspective interprets adaptivity as an extension of the actor
ontology. This paper recognizes as Maes (1994) and Thomas and Fischer (1996), i.e. the
importance of an agent-based architecture as a useful model to support the dynamic
customization of a system to a generic user, but is differentiates from both in the
following two essential aspects.

f The use in our model of an abstract, completely distributed and modular approach in
the hypermedia architecture and in particular for user modelling.

f The different, more general cooperation schemes among the agent populations.

In our approach, the strong task decentralization and the efficient interaction
policies increase the dynamism and reactivity of the model, and is not limited to
stereotype-based (Kaplan et al., 1993; Boyle & Encarnacion, 1994) or overlay-based
schemes (De Rosis et al., 1993; Scott & Ardron, 1994). Furthermore, we underline that
the two levels of possible adaptivity, adaptive presentation and adaptive navigation
(Brusilovsky, 1996), are supported in few systems [Hypadapter (Boecker, Hohl
& Schwab, 1990) is one of these]. In our model, these two types of adaptivity can be
supported because of the cooperation activity between the adaptive and the teleological
levels.

7. Conclusion and future work

Our goal was to enrich an existing hypermedia architecture (Dattolo & Loia, 1996b) with
an appropriate user-modelling activity, conceived and developed with the same design
perspective of the underlying system, i.e. the actor-level design approach. The organiza-
tional structure has been defined by using a previous platform. Within this scope, we
have proposed a general, distributed architecture able to adapt hypermedia functions to
the user behaviour. The bulk of our hypermedia architecture is composed of five
categories of actors, three of them dedicated to user modelling. Previous experience in
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crafting-distributed cognitive diagnostic systems (Loia, 1994; Loia & Quaggetto, 1994)
helped us in defining the overall architecture.

Our approach leads to various advantages.

Organizational structure. The user recognition is accomplished through a cooperation
activity determined by an actor-based knowledge acquisition process. The specialization
of InfoActors knowledge and duties for each hypermedia node allows us to handle local
observations of the user better, personalizing metrics and strategies that depend on the
various user characteristics. This organizational approach leads to a flexible architecture
where the functionality can be extended without affecting its inner features.

Cooperation modes. Significant user-cognitive actions are detected by the InfoActors
and sent to the UserActor. The UserActor collects the individual user profiles and works
independently while InfoActors continue their activity. The UserActor applies specific
learning strategies and takes a decision on when and where to adapt to user behaviour.
In this case, it sends appropriate messages to InfoActors, that, in turn, communicate the
new preferences to the relative TeleoActors. This method allows the system to be flexible
and adaptive, while avoiding rigid schemes that do not support the dynamism and
evolution of the user easily.

Conflicts. No conflict can arise between InfoActors, since the existence of a unique
UserActor leads to the centralized management of the recognized preferences. This does
not decrease the potential level of distributed operation. In fact, in order to use the
concurrency of the model better, we are currently developing a collaborative, multiuser
version of our architecture, where for each user we have an autonomous UserActor.

Distributed, decentralized computation. The StorActors are independent hypermedia
nodes, the TeleoActors work in parallel, as do the InfoActors. Concurrency is introduced
not only to use parallel technology but also as a metaphor for software design.

The architecture has been applied in the development of a hypermedia system that is
used to support an object-oriented logic programming system (Dattolo & Loia, 1996b;
Loia & Quaggetto, 1996). The results are sufficiently interesting to encourage further
work although some problems exist in the current version.

¹here is too much work for the application engineer. The knowledge specification for
each InfoActor requires considerable effort and we are investigating the possibility
automating their construction by applying a meta-level definition scheme.

Few reasoning mechanisms are used by the ºserActor. Currently, a threshold-based
deduction strategy is supported. This is because our initial experimental effort was
focused on providing a general and very flexible framework. The UserActor deduction
strategies can be easily enriched by defining additional scripts (Lashkari, Metral & Maes,
1994; Maes, 1994).

The resolution of these issues are part of our ongoing research effort.
Another research direction is the generalization of our actor-based architecture

to-wards open systems like the WWW. The WWW in its current form does not support
distributed applications in an easy and direct way. This explains the latest trend devoted
to overcoming this important deficit [see Web* (Almasi, Suvaiala, Muslea, Cascaval,
Davis & Jagannathan, 1995), JOE (Sun Microsystems, 1996), PageSpaces (Ciancarini,
Knoche, Tolksdorf & Vitali, 1996)]. A common feature of these different approaches is
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enforcing the role of Java as a middleware platform fully integrated in current Web
technologies in order to allow really distributed applications. We intend to follow this
direction; we have already designed a base class ‘‘Actor’’ which enables actor-computing
in Java, and we plan to complete a port of the entire hypermedia architecture in short
time. This facility is obtained via actor-based coordination policies that manage interac-
tion activities in different layers of the platform.

We would like to thank Len Bottaci for providing valuable suggestions and useful corrections on
the earlier version of this paper, and the anonymous reviewers for their useful and constructive
comments.

Part of this work was supported by the EECHCM project »IM; a virtual Multicomputer for
Symbolic Applications, ref. ERB4050PL-0186.
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