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Abstract

In this paper we discuss a distributed user model ar-
chitecture suitable for hypermedia systems. In this ar-
chitecture, the user knowledge is spread over a collec-
tion of autonomous actors, cooperating in a way which
provides, through collaborative activities, a global, dy-
namic user model. Separate duties and knowledge,
combined with asynchronous and concurrent process-
g, augment the adaptivity and the efficiency of the
platform, avoiding the drawbacks of more traditional
centralized approaches. Qur goal was to enrich an
existing hypermedia architecture with an appropriate
user model activity, conceived and realized with the
same design perspective of the underlying system, the
actor-level design approach. The organizational struc-
ture has been defined by extending a previous hyperme-
dia system model without redesigning the overall ar-
chitecture. The prototype has been tested with success
as an adaptive hypermedia interface in a logic object-
oriented programming environment.

1 Introduction

The design of adaptive hypermedia systems (AHS)
requires abilities to meet users’ expectations at run-
time; this need is becoming a crucial issue in more
recent applications since the current technology pro-
vides an increasing amount of available electronic in-
formation and a more intensive integration of different
media. The fact that nowadays the W orld Wide Web
(WWW) [3] has shown hypermedia’s potential to hu-
man society has fostered :

e the creation of new information repositories that
are physically decentralized;

e the development of new information assistant
strategies that support the user in exploring the
jungle of repositories.

The second trend includes the research activity con-
cerning the study of adaptive systems; most of the
efforts accomplished by the scientific community have

been spent in proposing metrics able to evaluate user
cognitive state [29], in defining different forms of adap-
tivity (presentation and navigation) [6], in using nor-
mative user models (overlay [13, 22] and stereotype
[30, 18] models) or prescriptive user models [21], in
deepening the problems of orientation and compre-
hension [31], in implementing user-oriented querying
assistance [1]. Additional work is necessary in order to
define effective and general architectures able to sup-
port the previous methodologies. The usual trend is
to separate the user model package from the hyper-
media environment [22], centralizing the intelligence
of the user model in a unique specialized module. The
fact that information is disseminated over a web col-
lides with this design approach, stimulating the in-
vestigation into new distributed hypermedia environ-
ments provided with distributed user modeling facil-
ities. Qur work 1s framed in this direction; its focus
is to propose a new and more general way to conceive
the adaptation process in hypermedia-based informa-
tion systems. Principally two aspects differentiate our
model from the other existing approac hes:

e the user model and the related functionalities are
completely modularized and distributed in the
system.

e the process of collecting and analysing user be-
havior occurs during the hypermedia browsing ac-
tivity and it is automatically exploited for new
customized browsing.

The proposed framework is viewed as an “Open Sys-
tem” [16], an environment in which a continual flow
of new information is originated from numerous ac-
tors. Actors benefit from massive concurrency; they
own local data (acquaintances) and perform func-
tions (scripts) concurrently. The decentralization of
knowledge and tasks does not prevent the actors from
managing global actions; in fact, designed collabora-
tive duties may be adopted to coordinate their inten-
tions. We adopted the Object-Oriented Concurrent
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Programming (OOCP | in short) paradigm to design in
high-level fashion complete decentralized systems; it
provides a useful organizational layer to develop open
systems [b]. The main computational en tity at the ba-
sis of this programming metaphor is the “actor” [2].

The results of this work are part of a larger project
which 1s based on the study and realization of com-
plex software systems within distributed architectures
[9, 11, 14]. Recently, our attention has been focused,
on one hand, on the problem of improving the design
phases of distributed hypermedia architectures [10, 12]
and, on the other hand, on distributed models to sup-
port user model management [25]. In this work we
present results motivated by an attempt to unify the
previous two goals in a unique framework.

The paper is organized as follows. Section 2 de-
scribes some issues of the user modeling in AHS. Sec-
tion 3 introduces the architecture of our hypermedia
system, highlighting the organization structure and
the cooperation schemes. The software architecture of
the developed prototype and its use in object-oriented
logic programming are described in Section 4. Sec-
tion 5 describes more in detail some actor categories,
and 1llustrates the dynamic user recognition process.
Concluding remarks summarize the adv artages of the
approach and some aspects that require further inves-
tigation.

2 Adaptive Hypermedia Systems

AHS are a new direction of research; it has become
increasingly popular in the last five years. AHS are
systems designed to learn by being used and to in-
crease the functionality of the hypermedia by making
it personalized. However, some recent work demon-
strates that AHS techniques can be applied in a num-
ber of other application areas, as for example infor-
mation retrieval hypermedia [19] or personalized in-
formation spaces [32]. Essentially, adaptivity is based
on the accomplishment of two basic tasks:

e memorization of several protocols about (possi-
bly) all occurring actions.

e analysis of these protocols and extraction of new
user habits/preferences.

The learned knowledge is then applied in order to
modify situation-dependent interfaces and informa-
tion nodes.

Initially, AHS appeared as adaptive graphical inter-
faces able to support simple but frequent operations
such as UNDO/REDO strategies, active help, prede-
fined plans-of-actions schemes. With the evolution of

hypermedia models, and with the enormous diffusion
of hypermedia applications in different social and pro-
fessional classes of users, the need of more efficient
adaptive methods is now strongly required. Fortu-
nally, adaptive hypermedia comm unity has benefited
from the long experience acquired by research on user
(or student) modeling, especially in the field of ar-
tificial intelligence in education. The efforts accom-
plished in this area have been extremely useful to solve
the difficult task of user’s knowledge acquisition but
minor attention has been paid in studying the possi-
ble implications on the hypermedia design architecture
task. This was our main starting point: in fact, the
work herein reported should not been considered as a
new user modeling method designed for hypermedia
applications but as a specialization of an open hyper-
media model for adaptive user interaction.

3 Actor-based Model of Hypermedia

Our framework of hypermedia is fully described in

terms of autonomous and distributed actors. Each ac-
tor is a computational object living on autonomous
knowledge and duties in a distributed, concurrent en-
vironment. Designed cooperation activities may arise
when the need to attain a global goal stimulates the
different actor categories to collaborate. The actor
model adopted here extends the “classical” point-to-
point actor comm unication protocol introducing more
general and powerful schemes such as multicasting and
broadcasting. A first attempt to define such actor-
based hypermedia architecture appeared in [9]; re-
cently a more complete description of this model and
its applicability in a CSCW (Computer Supported
Collaborative Work) target has been discussed in [12].
Here we are interested in extending the original ar-
chitecture towards adaptivity. The primitive entity of
our model 1s the actor; it serves as a small container
of hypermedia information. The different media are
stored in appropriate local resources (acquaintances),
that are managed by local built-in scripts. Some of
these scripts accomplish “social” tasks, such as the
link managemen t.
In this section we provide the general framework that
is graphically represented in Figure 1. We character-
ize the different actor populations, highlighting their
role in the hypermedia structure and their adaptive
capability.

e Structural Layer. This section of the hyperme-
dia architecture corresponds to the architectural
model provided by the authors of the hyperme-
dia. It 1s composed of two populations of ac-
tors, the HypActors and the Collectors. Although
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Figure 1: The hypermedia architecture.

these two actors are different in structure and be-
havior, they serve to compose the global orga-
nizational level of the hypermedia. Referring to
the classical literature on hypermedia, the Hy-
pActors and the Collectors could correspond to
atomic and composite nodes; the HypActor en-
tity presents characteristics normally contained
in nodes and links of classical hypermedia models
(notecards, frames, nodes, slices [15, 17]). The
Collector handles collections of HypActors and
is useful to maintain and compose hypermedia
views during browsing and query activities. The
union of HypActors and Collectors represents the
most general, complete user perspective of our hy-
permedia system. From now on, we use the term
StrActor to indicate a generic object which be-
longs to this union and exists in the structural
layer.

Teleological Layer. This layer is composed of the
population of TeleoActors. The role of this cate-
gory of actors is to provide all possible dynamic
user perspectives of the hypermedia. This task
is carried out in a distributed and collaborative
way. For this reason, each TeleoActor is special-
ized in the utilization of a unique StrActor and
in the interfacing between the data/services pro-
vided by the StrActor and the user, according to
the evolution of the preferences shown by the user
during the browsing activity. The ability to shape
the functionality of the StrActor is given through
cooperation with the Adaptive layer (see below);
in fact, as we will discuss in the next sections, the
knowledge about the user is acquired by an ex-
ternal entity, the InfoActor. More precisely, this
means that for each Stractor there are a unique
TeleoActor and a unique InfoActor.

Adaptive Layer. This level is composed of two
actor populations. The InfoActors work as in-
dependent monitors of user behavior, in order to

maintain a distributed, local user monitoring ac-
tive on the net. Each InfoActor keeps a trace of
the user activity and constitutes the main source
of information useful to the TeleoActor to define
wich view must be applied on the related StrAc-
tor.

The UserActor plays the role of coordinator
of the various InfoActors. Essentially, the In-
foActors inform the UserActor, in a parallel and
asynchronous way, about all the observations re-
ported. The UserActor collects these different
user profiles and recognizes a relevant user state;
in this case, the UserActor communicates the new
user behavior to the InfoActors.

W e deepen our discussion ly providing details about
the actors cooperation activities.

Collaboration Activities

e Primitive collaboration: StrActors < StrActors.

The framework of our hypermedia model is com-
pletely distributed. All the data and the services
are spread over a web of autonomous StrActors.
The structural and behavioral links between such
entities correspond to a cooperation protocol de-
fined between the StrActors. Key issues of hyper-
media management, such as the versioning mech-
anism [8], are accomplished thanks to a concur-
rent problem solving strategy [9].

Teleological collaboration: StrActor < TeleoAc-
tor, InfoActor = TeleoActor.

The bridge between the hypermedia architecture
and the user goals characterizes the Teleologi-
cal layer. The ways by which the user inter-
acts with each hypermedia node are provided by
the scripts of the corresponding TeleoActor. Es-
sentially, each TeleoActor furnishes various fil-
ters, which are made active by the user behav-
ior. Each filter modifies the functionality of the
related StrActor, by pruning/adding hypermedia
views. This task is accomplished thanks to a col-
laboration activity between each couple of StrAc-
tor and TeleoActor. An important constraint
to force this cooperation is given by knowledge
about the user behavior which is acquired by the
related InfoActor. This knowledge constitutes the
basic information in the TeleoActor useful to de-
fine the filter to apply on its StrActor.

Adaptive collaboration:

StrActor < InfoActor, InfoActor = UserActor,
UserActor = InfoActors.

This collaboration level consists of three tasks.
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The first is local knowledge acquisition about the
user. This task is carried out through a collabora-
tion activity between the StrActor and its related
InfoActor. The InfoActor follows all the activity
on the current StrActor and keeps a trace of the
user actions. This task produces an initial knowl-
edge about the user behavior which allows the
TeleoActor to apply a first local filtering.

The second task consists in charging the InfoAc-
tors, which spy on the user browsing, to forward
the most significative observations to the User-
Actor. This latter collects this information asyn-
chronously. This means that, during the user
monitoring, the InfoActors and the UserActor
work in an independent way. The UserActor owns
local duties which allow it to establish when and
how the user model changes [28].

Finally, the third task occurs whenever the User-
Actor decides to change the current user model.
In this case, the UserActor informs the InfoAc-
tors about the need to update their user perspec-
tive. This action is performed by exploiting con-
current message passing in order to improve the
adaptivity of the system. As stated previously,
once an InfoActor acknowledges this message, it
comm unicates to 1ts TeleoActor the necessity to
modify the user vision of the related StrActor.
This knowledge allows each TeleoActor to filter
data and services on the corresponding StrActor,
so that the user update occurs in a deeper way,
taking into account not only the local actions per-
formed on the single node but also the user be-
havior reported during the rest of the browsing.

4 Application

The described architecture has been applied in the
development of a hypermedia system, named DiBlue,
which is useful to support logic object-oriented pro-
gramming in OPLA. OPLA [27 is a hybrid language
originated from the marriage bet ween Prolog [7] and
CLOS [4]. Our experience consisted essentially in
modifying the “traditional” OPLA hypermedia pro-
gramming environment, named Blue [2§, in order to
obtain a distributed version, DiBlue [12]. In this work,
we report the results obtained enhancing DiBlue with
the adaptive model. Figure 2 depicts the software
modules used in the realization of DiBlue.

The reader can note that the first layer (corre-
sponding to the Blue realization) consists essentially of
CLOS and CLUE [20] (this last to handle X-Windows
objects), while the extension of Blue towards a dis-
tributed framework has been possible by using Hyper-

Figure 2: The DiBlue software platform.

Clas. HyperClas [9, 11] is an object-oriented language
based on the top of CLOS; for this reason, its program-
ming style is very similar to CLOS. The programmer
embodies in the actor class definition all the informa-
tion which characterizes the structural definition part,
in the same way as CLOS programmers do for the class
construct. The behavioral definition part is made ex-
plicit outside the actor construction. Essentially, the
user specifies a set of external scripts which are linked
to actors entities via dynamic bindings and inheritance
mechanisms. The detachmert between structure and
behavior improves the flexibility and the efficiency of
the software components. Due to a lack of space, we
omitted more details about HyperClas, that can be
found in [9, 11]. Here we briefly provide some fea-
tures of DiBlue environment. The scenario of Fig-
ure 3 shows the situation in which the OPLA user
requires information about the OPLA class PRODUCT.
The interface in Figure 3 is organized in such a way

DiBlue Inspector
® G G

Mota-class: STANDARD-GLASS

Direct SuperClasses : Super Slots :

STANDARD-OBJECT g

[KINLY 1 [KINLY [CIW0Y

Direct : Direct Slots

S [ ence 5
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jence List :

Direct Methods :

-
% Class Browser

Gesd G || cuomes
Lxuv-pRooucT

SUWLYARf oBJECT [KImL;

—or

>

PRODUCT

loading(Obj :type product, Quantity) :-
v-agdoueT ol

read(Obj, quantity, Oldquantity),

Newquantity is Oldquantity + Quantity,
FURCOAT

write(Obj, quantity, Newquantity).

Figure 3: The DiBlue class browser.

as to provide meaningful information about the class,
the superclasses and the subclasses, by specifying the
data part and the procedural part, according to the
inheritance mode. These data are shown in the up-
per pane, whereas the lower pane is dedicated to code
editing. In particular, the method loading in Figure 3
is spotted when the user selects the method identifier
in the upper Direct Methods area. For instance, if
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the user selects the documentation mode (see top-level
banner), different class-based information is available
in DiBlue; in Figure 3, on the left-most side, we show
the Class Browser window, in which a graph pro-
vides the inheritance ordering that exists among the
classes in relation with PRODUCT. The Class Browser
window may change, by showing additional informa-
tion, such as the slots, the methods, or both. For a
sake of simplicity, in the following, we suppose that
a generic user can see the class browers in only three
different ways; let us denote these three views with A
(only classes), B (classes with methods) and C classes
with slots. In particular, the Class Browser window
in Figure 3 shows the view A. In the next section, we
will return back on the situation shown in Figure 3 to
discuss adaptive evolution of the system.

5 Adaptivity at Work

As discussed in Section 3, the bulk of our hyperme-
dia system is composed of five actors categories, three
of them dedicated for the user modeling task. This
section presents more details about the inner capabil-
ities of these last three actor populations, providing
a more formal description of them and showing part
of their functionalities through a practical example in
DiBlue.

5.1 TeleoActor

The TeleoActors act as an adaptive interface between
the Structural layer released by the hypermedia au-
thor and the user effective utilization. The existence
of these actors allows one to adapt the hypermedia
functionality according to the user behavior. FEach
TeleoActor provides a given view of the correspond-
ing StrActor. This view changes by adding/deleting
data and services of that hypermedia node.

The HyperClas code in Figure 4 shows the defi-
nition of the TeloActor object. Because our aim is
to focus the reader’s attention more on our frame-
work than on the implemen tation details, the access
mode instructions are substituted with a synthetic in-
formal descripti on. It is important to note that in
the data part of the TeleoActor we have a link with
the relative StrActor. More precisely, when a StrAc-
tor instance is generated, automatically an instance
of a TeleoActor is created and coupled with the cor-
responding StrActor via the local resource struct
(containing properly the address of the StrActor in-
stance). The same mechanism is applied to couple
an instance of a TeleoActor with its corresponding In-
foActor instance. Another important local TeleoAc-
tor resource is services. This acquaintance may be

(defclass TeloActor(Actor)

(struct ...) ;;to address the related StrActor
(info ...) ; s to address the related InfoActor
(services ...);;to identify the allowable services

(inSuggestion ...) (brSuggestion ...)
(cnSuggestion ...) ;;to maintain the interface,
; ; browsing and content user preferences

G...) )

Figure 4: The data part of the TeleoActor.

viewed as a frame which depicts all the possible ser-
vices usable on the current StrActor (a list of possible
calls to scripts associated with the StrActor). When
a TeleoActor is created, the complete suite of services
is addressed; during the interaction between the user
and the system, each TeleoActor may alter such re-
sources on the basis of designed information provided
by its InfoActor. The local resources inSuggestion,
brSuggestion and cnSuggestion serve to collect the
user behavior changes, in terms of three basic action
categories: interface, browsing and content. These
resource are updated by the InfoActor info. In the
windows of Figure 3, a TeleoActor is responsible for
displaying the current Class Browser A.

5.2 InfoActor

Each InfoActor is equipped with enough knowledge
to recognize the user action. This knowledge depends
on the domain content in order to better control and
understand the user cognitive behavior. The code in
Figure 5 shows its definition.

When the InfoActor is created, it owns an in-
dispensable amount of context knowledge which is
given by the system designer and stored in the ob-
ject domain. The user monitoring is stored in the
four resources inInfo, brInfo, cnInfo and msInfo;
these objects can be viewed as frames containing in-
formation to identify the user actions in terms of four
basic categories: interface, browsing, content, mea-
surements. FEach of these classes depicts the local user
activities. For instance, msInfo contains a sequence of
numbers which quantify some user actions performed
on the corresponding StrActor, such as the number
of visits done by the user, the average value of the
time spent during the visit, and the number of help
activations required by the user. The InfoActor es-
tablishes comm unication schemes with its TeleoActor
and the UserActor. The messages from the InfoActor
to its TeleoActor enable the latter to be run-time up-

TEEE ':a

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

1060-3425/97 $10.00 (c) 1997 IEEE



(defclass InfolActor(Actor)

(struct ...) ;;to address the related StrActor
(telo ...) ;s to address the related TeloActor
(usrActor ...);;to address the UserActor

(domain ...) ;;to specialize the behavior in the
;s current context
(inSuggestion ...) (brSuggestion ...)
(cnSuggestion ...)  ;;to collect the user
; s preferences to send to the TeloActor

(inInfo ...) (brInfo ...) (cnInfo ...)
(msInfo ...) ;;to keep trace of the user actions
(inTrust ...) (brTrust ...) (cnTrust ...)
(msTrust ...) ;;to record the InfoActor trust

; s values wn the previous four slots
(inHints ...) (brHints ...) (cnHints ...)
(msHints ...) ;;to store the new user behavior

; s sent by the UserActor
C...) )

Figure 5: Data part of the InfoActor.

dated on the more recent user needs. This 1s possible
thanks to the local InfoActor’s acquaintances which
provide useful information about user behavior chang-
ing, that it, inSuggestion specifies the last user inter-
face choices, brSuggestion represents the user brows-
ing modalities and cnSuggestion represents the user
content expectations. We note that inSuggestion in-
cludes those aspects which in Dexter [15] are stored
in the Presentation Specification area of any compo-
nent. For these reason, as said before, a TeleoActor is
responsible for displaying different views for the same
StrActor, but a InfoActor is responsible for informing
that TeleoActor about the meaningful view for the
user (in Figure 3, the Class Browser A).

The second comm unication activity is provided by
the collaboration with the UserActor; here we dis-
cuss the messages from InfoActors to UserActor, de-
ferring the other communication in the next sub-
section. The InfoActor possesses local and tempo-
rary user perspectives in the acquaintances inInfo,
brInfo, cnInfo and msInfo, which are respectively
the result of the tracing activities locally performed
by the scripts trace-in, trace-br, trace-cn and
trace-ms. These four typologies of information, to-
gether with the corresponding trust values inTrust,
brTrust, cnTrust and msTrust are sent to the User-
Actor. As we will see in the next subsection, the User-
Actor collects this information asynchronously and es-
tablishes when and how the user model changes. The

application of these changes induces the adaption of
the local InfoActor knowledge to the new user per-
spective. This updating step consists of modifying the
local acquaintances inTrust, brTrust, cnTrust and
msTrust in order to dynamically vary the relevance
of corresponding InfoActor observations. The rule ap-
plied to change these value is similar to that used in
[23]. Let s be the suggestion brInfo (or respectively
inInfo, cnlnfo, msInfo), provided by the InfoActor
to the UserActor and let p be the suggestion chosen
by the UserActor and considered as relevant amongst
all the suggestions received by all the activated In-
foActors. The formula used to compute the new trust
value brTrust (or respectively inTrust, cnTrust and
msTrust) is:

trust = clamp(0, 1, trust+9; px(yrtrustx(1—wSum)))

where

5. — +1 if suggestion s = UserActor preference p
5P —1 if suggestion s # UserActor preference p

and the trust maintains the old trust level in brTrust
(or respectively in inTrust, cnTrust, msTrust) of the
InfoActor, wSum represents the corresponding value
in wBrTrust (or respectively in wInTrust, wCnTrust
and wMsTrust) provided by the UserActor, v is the
trust learning rate, and the function clamp(0, 1, v) en-
sures that the value of v always lies in (0, 1].

The rationale behind the modeling above is the follow-
ing. The previous formula works in such a way as to
increase (respectively decrease) the trust related to the
four local slots inInfo, brInfo, cnInfo and msInfo,
when the information contained in them, correspond-
ing to the suggestions sent previously to the UserAc-
tor, has (respectively, has not) been effectively taken
into account by the UserActor as meaningful for a new
user behavior. The amount by wich the trust value
rises or falls depends on the confidence of the other
InfoActors in the suggestion provided by the current
InfoActor. That is, if the suggestion of the InfoActor
is not taken in account by the UserActor and the av-
erage trust (wSum) expressed by the other InfoActors
is high, then the trust value should be penalized less
heavily than for an incorrect suggestion with a lower
average trust value. This inverse ratio is captured by
the value (I — wSwm). The formula to update the
trust values of the single InfoActors constitutes the
more relevant part of the script update-trust.

5.3 UserActor

Although the goal of the InfoActors is to observe local
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user actions, the main task of the UserActor is to study
these actions in order to infer new, general user prefer-
ences. Once this information has been customized by
the corresponding InfoActors, the new habits would be
sent to the corresponding TeleoActors. The UserActor
is hence a collector-like actor, since it must organize
the knowledge provided by collections of InfoActors.
In Figure 6 a code description of its data part is shown.
The cooperation activity that allows an adaptive evo-

(defclass UserActor(Actor)
(infos ...) ; i to address the InfoActors
; s responsible of the current user view

(futurelnfos) ; i to address the InfoActors
; s tnterested in update the user model
(inInfo ...) (brInfo ...) (cnInfo ...)
(msInfo ...) ; s to store the different local
; ;s user actions provided by the InfoActors
(inTrust ...) (brTrust ...) (cnTrust ...)
(msTrust ...) ;s to maintain the trust values
; s user related to the four previous slots
(wInTrust ...) (wBrTrust ...)
(wCnTrust ...) (wMsTrust ...)

; s the normalized weighted user sum of trust

; s values exactly related same suggestions
(gwInTrust ...) (gwBrTrust ...)
(gwCnTrust ...) (gwMsTrust ...)

; s to contain the highest trust values
(gInHints ...) (gBrHints ...)
(gCnHints ...) (gMsHints ...)

; i to store the user features corresponding to

; s the previous highest trust values

G...) )

Figure 6: Data part of the UserActor.

lution of the hypermedia is obtained by a continuous,
asynchronous information flow between the InfoActors
and the UserActor. In more detail, the InfoActors in a
parallel and asynchronous way return local user views
to the UserActor (the slots inInfo, brInfo, cnlnfo
and msInfo) together with the related trust values
(inTrust, brTrust, cnTrust and msTrust). For ex-
ample, let us suppose that, from the situation shown
in Figure 3, the programmer accomplishes meaning-
ful operations, detected by some InfoActors and en-
voied to the UserActor, as shown in Table 1. Table
1 shows the asynchronous information flow from eight
InfoActors (Infol, Infol, ..., Info8) to the UserAc-
tor. More in detail, first column contains the time in
minutes (starting from 0, that it the first clock signal

time | InfoActor | suggestion | trust
0
0.5 Infol B 0.5
0.8 Info?2 C 0.6
1.7 Info3 B 0.1
2 Info4 C 0.38
2.7 Infob C 0.75
2.7 Info6 A 0.7
3 Info7 C 0.8
3.5 Info8 C 0.9

Table 1: Asynchronous information flow from InfoActors
to the UserActor.

after the last threshold fixing) in which the UserActor
receives the couples (preference, trust) (respectively
third and fourth columns) from the activated InfoAc-
tors (second column).

For a sake of simplicity, the sent messages are re-
lated only to the three Class Browsers, A, B, and
C. The UserActor evaluates such information starting
from the values contained in this case in brTrust and
gets, for each component inside brTrust, a normal-
ized weighted sum (wBrTrust) by means of the exe-
cution of the script return-trust-wsum. The highest
trust sum determines the relevant user preference to
take into consideration. If this value is higher than
the corresponding (current) meta-net threshold, con-
tained in gwBrTrust, then this slot is updated with
the new higher value. This corresponds to a new cur-
rent meta-net threshold. Following the evolution of
the data contained in Figure 1, the graph in Figure
7 synthesizes the progress of trust functions pointing
out the user preference change at time 3.5 min utes. In
Figure 7 is evident that the Class Browser A remains
current for 3.5 minutes; at this time, wBrTrust(C)
overcomes wBrTrust (A) and the first becomes the new
current meta-net threshold gwBrTrust. This situation
provokes the decision of the UserActor to modify the
user preferences from the scenario A (left most win-
dow in Figure 3) toward scenario C (Figure 8). Now,
the UserActor comm unicates the deduced meaning-
ful user changes, the slot gBrHints to the interested
InfoActors futureInfos '. This action is performed
by the script propagate-changes. Now, because a
new threshold is established, it is necessary to update
the local, distributed trust contained in the sender In-

!The futureInfos identifies the collection interested in up-
dating the user model; in particular, it is defined as the union
of the current active InfoActors and their frontier, extended k&
times by means of an iterative process (where k is a natural
number related to the specific application).
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user preference change
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Figure T7: Three trust functions; the function

wBrTrust (C) invokes the user preference change at time
3.5 minutes.
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Figure 8: An example of the browsing mode C.

foActors. This is done by sending the multicasting
message update-trust to each InfoActor specified in
infos. Naturally, the whole process is accomplished
also for the other three typologies of suggestion (in-
terface, content, measurements). To better explain
this behavior we visualize the adaptive collaboration
in Figure 9. Figure 9 visualizes the cooperation be-
tween the UserActor and the InfoActors. In this ex-
ample, the InfoActors Infol, Info2 and Info3 repre-
sent the resource infos, while the InfoActors Info3,
Info4, Info5 and Info6 are the futureInfos. Each
InfoActor in infos spies the user browsing and sends
a local and partial user view to the UserActor. In Fig-
ure 9, the InfoActor Infol reports special user interest
towards a given interface format, Info2 illustrates a
favourite browser activity and Info3 underlines the
user choice about a certain topic. This information
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Figure 9: Cooperation activity between UserActor and
InfoActors.

(the resources inInfol, brInfo2 and cnInfo3) is col-
lected by the UserActor in the acquaintances inInfo,
brInfo and cnInfo, respectively. Then, the main
UserActor activity consists in analyzing such data as
part of the Global User View (GUV). As a result of
this process, the UserActor updates the GUV and, if a
new user state is detected, as shown in Figure 9, then
1t sends:

e the new user preferences (in the most gen-
eral form, the slots gInHints, gBrHints,
gCnHints and gMsHints) to each InfoActor in
futureInfos;

e the information (the slots gInHints, gwInTrust,
inInfo, wInTrust, gBrHints, ...) necessary to
update the trust values of all the InfoActors con-
tained in infos.

The previous actions are performed by the script
propagateChanges in Figure 10.

(defmethod propagate-changes(self UserActor)
(send (get-futurelnfos self) :spray
:selector update-preferences
rargs (get-gInHints get-gBrHints
get-gCnHints get-gMsHints self))
(send (get-infos self) :spray
:selector update-trust
rargs (get-inInfo get-wlnTrust

get-gulnTrust get-gInHints ... self)))

Figure 10: Distributed, concurrent user model update.

The previous HyperClas code exploits the multicast
message passing protocol via the keyword :spray in
order to gain concurrency in informing the InfoAc-
tor about the user model changes. At the execution
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of this script, a distributed, parallel update of local
user models occurs. The local treatment of the updat-
ing process 1s delegated to each InfoActor belonging
to futureInfos through the activation of a specific

script, update-preferences.

6 Final Remarks and F uture W ork

Our goal was to enrich an existing hypermedia ar-
chitecture [9] with an appropriate user model activity,
conceived and realized with the same design philoso-
phy of the underlying system. Previous experiences in
crafting distributed cognitive diagnostic systems [25]

helped us in defining the overall architecture.
This approach leads to several advantages:

e too much work for the application engineer: the
knowledge specification for each InfoActor re-
quires substantial effort. We are investigating
the possibility of automating their construction
by applying a meta-level scheme definition.

o few reasoning mechanisms are used by the User-
Actor: currently a threshold-based deduction
strategy 1s supported. This is due to the fact
that our initial experimental effort was focused
on providing a general framework with a high de-
gree of flexibility. The deduction strategies of the
UserActor can be enriched by defining additional
scripts without expensive design effort [23; 28].

Finally, the generality of our architecture permits one

to 1mage its future exploitation as not limited to hy-
permedia environments; for this reason, with the nec-
essary (minor) modifications, the application of the
model to other kinds of systems; such as DBMS or
CASE systems, represents an interesting future step.

e organizational structure: the user recognition is
accomplished through a cooperation activity de-
termined by an actor-based knowledge acquisi-
tion process. The specialization of InfoActors
knowledge/duties for each hypermedia node al-
lows the system to better handle local observa-
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