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Abstract - In this work we discuss a number of issues for the design of hypertext systems in an 
agent-based model of computation. We examine how the “traditional” fundamental concepts which are 
at the basis of the design of hypertexts can be re-visited under a new perspective of collaborative expert 
agents. The paper presents how some principles of high-level concurrent programming are applied as 
new methodologies for the design and development of complex software, such as hypertext systems. 
By adopting an agent-baaed framework, we gain powerful control on version management that presents 
considerable difficulties for the development of hypertext systems; a general distributed version control 
mechanism is applied, without significant differences, both in single-user and in collaborative multi- 
user mode. In both cases, the underlying hypertext architecture is defined in terms of computational 
agents interacting each other in order to accomplish common goals. In this paper we present a first-level 
prototype implemented in a concurrent object-oriented language, realized on the top of the Common 
Lisp Object System. 

Key words: Hypertext Systems, Version Control, Object-Oriented Concurrent Design, Computer Sup- 
ported Collaborative Work, Common Lisp Object System. 

1. INTRODUCTION 

In the last few decades, we have witnessed the growing interest of the academic and industrial 
communities in hypertext and hypermedia systems [40]. The wide range of applications of these 

“new” technologies has imposed their importance as indispensable features for computer-based 
systems. The work presented in this paper is the result of our experience gathered in the last 

six years working on the design and implementation of complex programming environments. In 
particular, we developed a software platform, named OPLA, able to conceive and implement, large 
object-oriented logic programming systems. The architecture consists of a fast interpreter and 

compiler [32], enriched by a programming environment [33] able to support the various activities 
which normally accompany the code production (debug utilities, browsing, documentation facil- 
ities, etc.). Owing to the fast growth of OPLA users and the strong object-orientation of the 

language, the need to strengthen the hypertext aspect in documentation management became a 
key issue for the survival of the OPLA platform itself. Before starting the implementation of this 
important requirement, we established the most important principles to follow in order to reduce 
the possible costs and risks of the project. Some of these guide-lines were: 

l design a general-purpose hypertext framework, in order to re-use it for other software appli- 
cations not strictly limited to programming environments; 

l do not modify the underlying application and, consequently, the basic implementation choices 
adopted to develop the interpreter, the compiler and the other main components of OPLA; 

l obtain something that could be specialized for program documentation, in particular for 
object-oriented logic programming; 

l manage not only the hypertextual spatial data separation but also a spatial duties organiza- 
tion. 
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As regards the last point, we have that information-intensive applications refer to external mate- 
rials [38], so that parts of the hypertext are decentralized in different computational settings. For 
this reason, a hypertext design environment should support efficient management of distributed 

information, exploiting (where possible) a corresponding distribution of services and tasks. As a 
matter of fact, in the hypertext field, the concurrent, or distributed approach is not new, but its 
use has been limited to solving problems which generally occur in multi-user hypertext systems, 
where we have a concurrent, collaborative access to databases shared across a net of workstations 

and file systems [36, 45, 491. 
Our approach is different: we focused our attention on exploring a general design environment 
suitable for combining the decentralization of data and tasks; we have adopted the agent model 

as a general framework to design the basic components of a hypertext system, by sketching both 
internal and external activities through an extended communication of task requests sent along a 
web of intelligent agents. Even though in recent years agent-based systems [8] seem to be a cliche, 
we recognize that their effective utilization radically revolutionizes the way in which the software 
is conceived and works. In an agent-based approach the knowledge, intelligence, information and 
tasks are distributed over populations of computational agents. To reach global solutions, specific 
cooperation schemes are formulated and implemented in order to allow the agents to execute their 
goals autonomously and independently [17]. G enerally, agent-based systems are realized by Object 

Oriented Concurrent Programming (OOCP for short) [41] languages. In fact, this choice frees the 

programmers from specific hardware requirements and facilitates the design of those software sys- 
tems that suffer from a monolithic computational approach. Programming software in agent-based 
frameworks has stimulated research in re-visiting the foundations of Artificial Intelligence, by pro- 
viding new schemes and methodologies to handle large-scale open systems [27]. Open Systems 
consist of a population of agents each of which is equipped with local knowledge and influence. 
The agents can share their knowledge and organize their activities to reach a common goal [13]. 
In this paper we focus our attention on the advantages that an agent-based design and implemen- 

tation can provide to a fast high-level prototyping of open hypertext systems [14, 431. The paper 
is organized as follows. In Section 2 we stress the benefits that high level distributed comput- 
ing brings to the design of a concurrent architecture of hypertext systems. Here we present the 

software platform used in our implementation. The platform is an OOCP language available on 
top of the Common Lisp Object System, the ANSI specification of the object-oriented extension 
of Common Lisp [6]. Section 3 provides the agent-based model of hypertext, taking into account 

the different agent populations which have been defined. Section 4 discusses the versioning prob- 
lem, one of the relevant issues in modeling and building hypertext systems. Our version control 

management is based on a collaborative activity among agents. Firstly, collaborative, single-user 
versioning is presented, differentiating the creation and selection phases. Secondly, in Section 5, we 
extend the previous versioning mechanism in order to support computer supported collaborative 
work (CSCW). We conclude the paper showing further research trends of our project. 

2. OPEN HYPERTEXT% THE AGENT-BASED APPROACH 

Generally a concurrent system has a kind of module (object, guardian, actor, agent) which is 
invoked by (and only by) messaging. This module hides data from all other modules, i.e. there 
is no sharing of data between modules. By messaging we activate light-weight processes within 
an addressed module. Sometimes these modules are known as ‘<active objects” and programming 
with active objects is nowadays named Object Oriented Concurrent Programming (OOCP) [41]. 
OOCP is represented by a large number of concurrent languages, which, despite their differences, 
allow to define active objects which interact each other through simple or complex communication 
models. Originally these objects were named actors because the underlying computational model 
was inherited from that defined by Hewitt [26] and successively deepened by Agha [2]. However 
the “pure” actor model suffers from rigid point-to-point communication protocol [3] that limits 
the design of efficient collaboration strategies suitable in organizational-based environments [16]. 
We overcome the classical actor-based model by introducing new communication strategies, such 
as multicasting, broadcasting, agent type-based message passing protocol. In order to avoid ambi- 
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guity, we refer to our computational entities with the generic name agents, being aware of that in 
our model the agents are not provided with hardwired skills for “social” reasoning [52]. For this 

reason, in our approach the designer of the distributed applications is responsible for implementing 
the wished cooperation activities by using the basic constructs of the language. 
Before entering into implementation details, we would like to illustrate the general model of our 
architecture. Essentially, a hypertext is a collection of heterogeneous objects (cognitive fragments 

viewed as texts, images, sounds,...) connected together by conceptual links. The user navigates 
this graph of concepts by browsing the nodes and applying different actions. Owing to the richness 

of the resulting environment, hypertexts are characterized by numerous distinctive features, such 
as: 

0 strong fragmentation of information, 

l high interactivity of information, 

l continuous stimulus to modify the contents, 

l natural approaches to retrieve information, 

l opening towards other systems. 

These important concepts generate several problems for the implementation of hypertext systems. 
The most common difficulty is known as “tyranny of the link” [24], which expresses the rigidity 

of the architecture which is not able to support, in an appropriate way, the cognitive activities 
offered by the hypertext. Recently, the need to improve the freedom of communication/handling 
of hypertext information has stimulated the research community into providing new strategies 
suitable for dynamic evolution of the system [14]. We argue that many difficulties remain unsolved 
in the implementation phase, because the underlying tools used as platforms for the design and 
implementation of hypertext do not support the concurrent, collaborative issues that exist at the 
basis of t,he system. In our proposal, the hypertext is conceived as an Open Information System 
[27], implemented by agents. The expertise, the knowledge, the actions of the system are sprinkled 
among different classes of agents that work simultaneously and independently. This “society of 
experts” is animated by exchanges of messages, by means of which the agents can communicate. 

The communication is asynchronous because each agent keeps a mail-box to receive enquiries and 
it keeps functioning even when receiving messages. Our model of agent programming has been 
realized using an object-oriented concurrent language based on the top of Common Lisp Object 

System, CLOS [6]. The concurrent extension of CLOS was named CLAS (standing for Common 
Lisp Actor System) and was initially tested and improved during the implementation of a significant 
application [18]. Once the functionality of CLAS was proven, we decided to specialize the new 
rnethod as a tool for the design of hypertexts. The resulting system, named HYPERCLAS, is 
illustrated in the next subsection. 

2.1. An Introduction to HYPERCLAS 

HYPERCLAS allows the creation of populations of agents which specialize in accomplishing 
tasks that generally occur in hypertext systems. The complete architecture employed to design 
the hypertext system is depicted in Figure 1. 

As the reader can note, HYPERCLAS has been built thanks to three main modules: CLOS, 
MTF-LCL (Multi-Tasking Facility of Lucid Common Lisp) [34] and CLUE [29]. CLAS provides 
object-oriented concurrent programming by using MTF-LCL in CLOS itself. CLUE is utilized to 
manage the graphical, window-based X11 interface in CLAS. 
From the standpoint of agent handling, HYPERCLAS is composed of two levels: 

l The first level consists of a module designed to solve all the problems which arise in concurrent 
programming, such as management of concurrent access to resources, scheduling of tasks, 
binding of local or global data to a process, locking or unlocking of a process, creation of 
processes and their destruction. To accomplish these goals we defined a super-class, named 
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Fig. 1: The modular composition of our platform. 

atomic-object, which specializes in handling mutual exclusion of processes. Thanks to this 
class, the legal access to fields of agents is guaranteed. 

l The second level realizes the agent model. The main difference between objects and agents 
consists in the fact that objects are seen as passive entities that communicate with other 
objects via active messages whereas agents are seen as active objects that exchange passive 
messages. Each agent is composed of a passive and active part, each of which is an object of 
CLOS. 

The active part of an agent is an instance of a class task that encapsulates the interface with 
the host multitask system. This class contains a slot called jeckill whose function is to address 
the passive part of the agent, i.e. the class Agent. Vice versa, in the class Agent we refer to the 
active part by means of a slot hide. In the code of Figure 2, we provide the definition of the most 
general object of HYPERCLAS, the Agent entity. 

(defclass Agentcatomic-object) 
( (hide :initform (> :reader get-hide :writer set-hide) 

(mbox :initform (> :reader get-mbox :writer set-mbox) 
(parcel :initform (> :reader get-parcel :writer set-parcel) 
(name : initf orm “hector” : initarg : name 

:reader get-name :writer set-name) 
(agent 6 : allocation : class : initform 0 : initarg :agents 

:reader get-agents :writer set-agents) > > 

Fig. 2: The basic definition of the Agent entity. 

The class Agent contains five slots: 

hide is meant to address the active part of the agent; 

mbox is used to support communication with other agents; 

parcel owns the current message; 

name identifies the agent; 

agents maintains abstract knowledge about the created agents. 

As the reader can note, the definition of the agent embodies (as in CLOS) only the data part. 
For each of these slots, we have methods specialized in handling it. For example the methods 
: initf orm, :reader and : writer are automatically generated by HYPERCLAS in order to ac- 
complish operations of initialization, reading and writing, respectively. Of course, we have other 
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methods usable by Agent outside its data part definition. In fact, the remaining behavioral part 
is detached from the agent data description, i.e. the implementation of the scripts is done outside 
the class definition. This programming style, which derives from the initial CLOS proposal, leads 
to a more flexible model. In fact, the connection between data (agent/class definition) and oper- 
ations (scripts/methods definition) is established by dynamic bindings and exploiting hierarchical 
structure. In this way, the user can specify the structure of the agents via the def class command, 
whereas the management of the contents is realized via the scripts definition, giving flexibility 

and efficiency in the separation structure/content. Before focusing our attention on the behavioral 
description of the agent, we will provide more information about the message passing strategies 
possible in HYPERCLAS. 

2.2. Message Passing Protocol in HYPERCLAS 

In HYPERCLAS the message passing protocol is enriched with five schemes that fulfil1 the 
various needs to send a task to agents. These schemes are: 

0 future 
future is an answer to a message in the form of a promise; the semantic of future is equal 

to that of ACT-l [30]. 

0 spray 
Wc select this message passing when we want to apply multicasting messages. 

0 express 
express is a message with the highest priority. If an agent receives this message while it is 

treating a normal one, then it stops the current task in order to handle the express request. 

l broad 
We select this message passing when we want to apply broadcasting messages. 

l all 
HYPERCLAS allows the creation of clones. A clone is a perfect duplication of the original 
agent. The difference between the two agents consists in the fact that when an agent is 
cloned, then the clone replaces the existence of the original agent that becomes an inhibited 
entity, i.e. it remains deaf to any external stimulus. If we want to escape from this rule, we 

can use the keyword all. In this case, the message is sent in multicast to both the active 
and inhibited agents. 

Message passing is supported by means of the construct send. A general form of send appears 
as: 

(send destinator kind-of-message task arguments) 

where: 

l destinator identifies the agent(s) to which the message is addressed; 

l kind-of-message specifies the strategy by which the message must be sent on the web 
(future, spray, express, broad, all); 

l task determines (via the keyword :selector) the script that we want to trigger once the 
message is acknowledged by the addressed agent(s); 

l arguments is meant to specify (via the keyword : args) the arguments (if existing), required 
by the script. 
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Fig. 3: Two different layers for Collectors and HypAgents agents. 

3. AGENT-BASED HYPERTEXT MODEL 

The framework of our hypertext model is completely distributed. All the information and the 
services are sprinkled over a web of autonomous agents. More precisely, our general framework is 
organized in two layers, as depicted in Figure 3. 

The first, named StruckruE-level agents, corresponds to the architectural model provided by 
the hypertext authors. It is composed of the population of HypAgents. The HypAgent entity plays 
the same role of well-known objects, such as notecards, frames, nodes, entities [15, 251. The second 
level, named Meta-level agents, provides a more “functional” hypertext perspective; on this layer 
we introduce a designed agent category, the Collectors, that allows visualization and manipulation 
of sub-sections of the underlying structural layer. 

3.1. The HypAgent 

This class of agents presents characteristics normally contained in nodes and links of classical 
hypertext models. The following code shows the definition of a generic HypAgent agent. 

(defclass HypAgentCAgent) 
( (title : allocation : class :initform (> :initarg :title 

:reader get-title :writer set-title) 
(version :initform () :initarg :version :reader get-version 

:writer set-version) 
(text : allocation : class :initform nil :initarg :text 

:reader get-text :writer set-text) 
(image : allocation : class :initform nil :initarg :image 

:reader get-image :writer set-image) 
(sound : allocation : class :initform nil :initarg :sound 

:reader get-sound :writer set-sound) 
(fromAgent :allocation :class :initform 0 :initarg :fromAgent 

:reader get-fromAgent :writer set-fromAgent) 
(toAgent : allocation : class : initf orm (> : initarg : toAgent 

:reader get-toAgent :writer set-tobgent) 
(deaf : initf orm (> :initarg :deaf :reader get-deaf 

:writer set-deaf) . ..> ) 

Fig. 4: The data part description of the HypAgent object. 

This single object is used to collect some fundamental data. Following the code of Figure 4, we 
specify the role of these attributes: 

l title stores the frame topic. 

l version is used for versioning management. 
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0 text, image, sound contain the text, image and sound related to the topic, respectively. 

l f romAgent stores the address of the HypAgents reachable from the current agent. 

l toAgent stores the address of the HypAgents from which it is possible to reach the current 

agent. 

l deaf maintains the address of the original node, if the HypAgent is a cloned entity. 

The operational part of a HypAgent is represented by its scripts; scripts are like sub-programs 
representing all the possible actions that the agent can perform. A representative number of these 

scripts will be discussed in the rest of the paper. 

5’2. The Collector 

This class of agents allows us to manage alternative browsing structures and views of partial 

sections of hypertext. These agents are introduced to create and handle separate collections of 
HypAgents, by providing a more abstract treatment of browsing techniques. The Collectors, as 

well as the composites, provide a means of capturing nonlink-based organizations of information, 
making structuring beyond pure networks an explicit part of hypertext functionality [20]. 
The main task of this category is to support the following requests: 

l allowing the author to structure the hypertext creating collections; 

l allowing the user to require a portion of the hypertext; indirectly a collection is created. This 

collection represents an extraction of HypAgent sub-population selected from all the agents 
forming the hypertext, i.e. an already existing “traditional” sub-graph is returned; 

l allowing the user to apply browsing strategies; a new sub-graph is created. In this case, the 
collection is still a sub-population of HypAgents, for which a specific browser is dynamically 
built, and triggered. 

To give an intuitive idea of this new category, we show the code of this class (Figure 5). 

(defclass Collector(HypAgent) 
( (collection :allocation :class :initform (> :initarg :collection 

:reader get-collection :writer set-collection) 
(frontier . . .;;code details omitted) 
(portion . . . > 
(clones . ..> . ..> > 

Fig. 5: The data part of a Collector. 

Some of t,he most relevant acquaintances of the Collector data part are: 

l collection: to store a set of addresses corresponding to a given collection; 

l frontier : to establish the borders of a region of HypAgents in a certain collection; 

l portion: to identify the collection on which new changes may occur; 

0 clones: to address those HypAgents belonging to a duplicated collection. 

The next two sections discuss the version control management mechanism [24]; in particular, 
Section 4 is dedicated to explaining the version control strategy for a single-user hypertext envi- 
ronment. In Section 5, we extend the single-user strategy in order to treat the version control for 
CSCW architectures. Such extension is applied by adding new agents to our basic platform, without 
modifying the basic behavior of our methodology, which remains in both cases (single/multi-users) 
based on a distributed, collaborative approach. 
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4. COLLABORATIVE VERSION CONTROL MANAGEMENT IN SINGLE-USER MODE 

The hypertext is a unstable resource. Users can create, destroy, modify nodes and links, 

changing small or large sections of the hypertext. In spite of these changes, some important laws 

must be observed: 

l coherence of the information. 

For instance, when we cancel a node, we must reorganize the area of the hypertext in which 
this operation occurs. This task consists in eliminating the corresponding links, updating 

the contents, moving markers, testing the validity of such changes, etc.. 

l access to old versions of the hypertext. 

The return to previous cognitive states must always be available, in order to reuse the in- 
formation and to maintain the derivation history [21]. In particular, in systems that utilize 
concurrency, version management is absolutely necessary to maintain consistency of data 

[361. 

In the following, we use the term version control [5, 461 to indicate the ability to manage 

dependencies between subsequent instances of the same document, organize them into meaningful 

structures and allow such operations as navigation through or computation of them. In particular, 
the version control provides different control strategies suitable for handling the node-based version 
and the structure-based one [50]. In our model, the approach to version control is uniform, i.e. the 
node/structure distinction is broken, since in the agent-model each single entity acquires the global 

net not by accumulating data in a single entity, but by applying concurrent cooperation schemes 
among de-centralized entities in order to reach common goals. Thanks to this new perspective 

the node-based version becomes a particular aspect of the most general structure-based version. 
Hence, in this paper we use the terms configuration or version with the same meaning as the term 
configuration adopted in software engineering [28], i.e. to indicate a specific state of the hypertext 

structure as a whole. 
The goal of this section is to show how versioning, one of the key issues concerning the func- 

tionality of a hypertext, is carried out by specialized scripts of agents. By providing chunks of 
HYPERCLAS code, we prove how the agent-based model is a powerful technique to handle the 
hard task of version management. In detail, we illustrate our approach to manage the configuration 
problem. Such versioning faces the problems of updating all the hypertext in its current form [9]. 
We focus our attention on version control, omitting details about databases memory management. 

4.1. Version Creation 

To better introduce the reader to our solution, we explain our main idea, discussing our version 
mechanism in the case of node versioning which characterizes a session-based+ versioning. Suc- 
cessively, we tackle the application of our mechanism in the structure versioning showing that no 
difference occurs in this case. 
In Figure 6a, we can observe a general situation that occurs when the user decides to create a new 
state of the hypertext with a new version mark. Figure 6a depicts the state of the hypertext asso- 
ciated with a version labelled with ti. An original node is identified by Nk, whereas the notation 
Nkvj will identify the node Nk existing in a successive version vj. 

Each node of the hypertext, i.e. each HypAgent, contains, as local information, the list of all 
the versions to which it belongs (for simplicity we suppose that the only existing version is ti). The 
cognitive activity of the user is located on the node N2. The user modifies the node and stores 
the new content. This command provokes a session-based versioning operation, with a new storing 
of the hypertext indicated by ti+l. This situation triggers the script createconf ig. The action 
performed by such a script is shown in the code of Figure 7. 

tBy session-based versioning, we indicate, as in [36], the automatic creation of a new configuration at the end of 
each editing session for a given document. 
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Fig. 6: The configuration of the hypertext fragment before the modification on the node N2 (a) and after (b) 

(defmethod createConfig((self Collector) newconfig) 
(send (get-portion self > : spray :selector givemeYourFrontier) 

(set-collection (append portion frontier)) 

(send (get-collection self) :spray :selector cloneYourSelf) 
(send (get-collection self) :spray :selector freezeYourSelf) 

(send (get-clones self) :spray :selector changeYourName 

(send :broad :selector updateconfig :args newconfig) > 

Fig. 7: The script createConfig creates a new configuration 

The basic operation is to store the previous state of the system, in order to recover it during 
a derivation history. The duplication is necessary to maintain old layers of configuration; we 
duplicate only the section of the hypertext which is probably submitted to change. This section is 

composed of two different entities: 

l the current agent(s); 

l the collection of neighbour agents named 6_ontier. 

As regards the neighbour agents, possible alterations concern only the so-named frontier, i.e. that 

HypAgents sub-population identified by all the incoming/outcoming neighbours that do not fall in 
the section to be modified. We underline the fact that the neighbours of the frontier are not cloned 
but just updated; the updating consists in adding in their local contexts the new version mark and 
the links to the cloned frontier in order to bind the bulk of the new configuration with the rest of 
the hypertext. In our example (see Figure 6a), this corresponds to duplicating the current node 
(N2), together with its frontier (Nl) avoiding to duplicate the nodes N3 and N4. 
A Collector is responsible for creating a new configuration. Let us illustrate all the basic steps of 
this activity, following the statements of the code in Figure 7. 

As first action, the Collector establishes which HypAgents need to be duplicated. This decision 
is taken in line 1, where a multicast message is sent to each HypAgent belonging to the portion 
subject to modification, the local resource portion (in our example, N2). In this way the frontier 
(Nl) is identified. As second step, the Collector assembles (line 2) both these resources (portion 
and frontier), in order to store in the acquaintance collection the complete area to be modified 
(Nl, N2). Next, the Collector clones in parallel each element in collection (line 3). This action is 
necessary to substitute new HypAgents (the cloned ones, Nlvl and N2vl in Figure 6b) with those 
which belong to past configurations (the original ones, Nl and N2). To guarantee coherence, after 
having cloned, the Collector freezes the original nodes (line 4). Frozen agents become inhibited 
entities. Though they exist, they are entities unknown to the rest of the system. Only a special 
message can resume frozen agents, as we will soon see. After all the HypAgents have generated the 
corresponding clones, these last ones concurrently change their name (line 5). Now, it is necessary 
that all the new cloned HypAgents and the rest of the active hypertext must be admitted to this 
new configuration by updating the configuration list with the new version label newConf ig (ti+l); 
this task is accomplished by sending, in broadcast on the net, the script updateconf ig (line 6). 
During this broadcasting, the script takes into account the need to bind the cloned frontier (the 
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node Nlvl) with the rest of the unchanged hypertext by adding this new link inside the contexts 
of the neighbours of the cloned frontier (the links Nlvl-N3, Nlvl-N4). In Figure 6b, we sketch 
the configuration after the cloning of the nodes Nl and N2. The reader can observe that the new 
state is singled out because the nodes N3 and N4 now belong to both the configurations marked 
with ti and ti+l, whereas all the active remaining nodes exist only in the latter version ti+l. In 
order to distinguish the active from the inhibited entities, we use, in our graphical representation, 
bold objects to depict active agents. It is worth enphasizing that an agent can be active only in 
one version. Thus, in the configuration labelled with ti+l of Figure 6b, the incoming links for N4 
exist only from the nodes Nlvl and N3 (since the node Nl is invisible in such configuration). 
The mechanism discussed before is normally adopted for session-based version creation. The 
difference with a user-decidedt version creation lies in the fact that in this last case the user 
decides when and where (on what agents) the storing of the hypertext occurs. For instance, let us 
suppose that the user alters the state of the nodes N3 and N4 in Figure 6b and that, only after 
having modified N4, the user requires the creation of a new version. In this situation, following 
our mechanism, we obtain a new configuration, as shown in Figure 8. 

Fig. 8: The configuration identified by the mark t;+z. 

We stress the fact that only active objects are cloned. The implementation of our versioning 
mechanism fully utilizes the parallel computation to the full. As the reader can note, the code of 
Figure 7 adopts largely the : spray sending option, in order to benefit from concurrent processing. 
In more detail: 

line 1. 
The identification of the collection to be stored is accomplished in parallel, because each agent in 
the resource portion owns enough knowledge to recognize those neighbours that will compose the 
frontier. Each of the agents in portion performs this task concurrently. 

lines 3, 4 and 5. 
The cloning of original nodes, their freezing and the change of names for cloned agents occur in 
a concurrent and asynchronous way. Thus, the fragment of the hypertext that must be stored is 
built in parallel. Thanks to the semantic of the script createconf ig, we handle different configu- 
rations of the hypertext in a high level way. The partition between active and inhibited societies 
of HypAgents allows efficient management of old contexts. 

line 6. 
In order to notify the new configuration of the hypertext, each interested node is informed concur- 
rently. The script updateconf ig broadcasts this message on the net until all the nodes acknowledge 
its reception. In this way, although we do not copy the whole network, we extend the version mark 
over the whole network. 

t By user-decided versioning, we indicate, a8 in [36], the version management driven by the user preferences. 



Collaborative Version Control in an Agent-based Hypertext Environment 137 

4.2. Optimization, Process 

The methodology previously described can be optimized by limiting the number of active 
HypAgents that need to be maintained. More precisely, when at the end of the modification 
process there are some nodes in which no change occurred, then we suppress these nodes and 
replace them with their corresponding original nodes. The optimization task is shown in the code 
of Figure 9. 

(defmethod optimi.zeConfig ((self Collector)) 

(send (get-clones self) :spray :selector optimizelourself)) 1 

(defmethod optimizeYourself ((self HypAgent)) 
(if unchanged 2 
(progn (send (get-deaf self) [:a11 :express] :selector awake) 3 
(send (get-deaf self) :selector updateconfig) 4 

(send (get-deaf self) :selector updatelinks) 5 

(updateLinks) 6 

(suicide)) > > 7 

Fig. 9: The script to optimize a configuration. 

The same Collector, which created the new configuration, is responsible for applying the opti- 
mization. This action is carried out by the script optimizeconf ig shown in Figure 9. The role of 
this script consists in delegating, in a concurrent way, the optimization mechanism to each clone 
present in t,he local resource clones (line 1). Each clone compares itself with the corresponding 
HypAgent: if no difference is noted (line 2), the cloned HypAgent awakes its original one (line 3) 
using the options : all to access to an inhibited entity and using : express to force the termination 
of such message before considering the next message. Once the original HypAgent becomes active, 

it can restore its (unique) presence in the hypertext. To do this, its configuration (line 4) and links 
(line 5) are updated, taking into account the links of its neighbours. The same updating operation 
(line 6) is carried out, on the neighbours of the clone and finally the clone suppresses inself (line 

7)+. 
Let us consider again Figure 8. Supposing that the links Nlv2-N3vl and Nlv2-N4vl are unchanged, 
then it is necessary to maintain the frozen HypAgent Nlv2. Consequently, this is suppressed and 
the agents N3v1, N4vl directly point to the (now active) agent Nlvl, as shown in Figure 10. 

Fig. 10: The result of the optimization process. 

tThe optimization process can be executed only when there is no user cognitive action on the interested nodes. 
During its execution, the nodes remain inaccessible. 
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4.3. Version Selection 

This activity enables the detection of a particular version of the hypertext. In our model the 
hypertext is represented by a population of both active and inhibited HypAgents. The active ones 
provide the current configuration. The remaining ones belong to suspended, past configurations 
still living in our agent-based universe. In this section we explain how we can gather all the 
agents belonging to a designated configuration. Let us suppose that the user requires access to a 
configuration by providing a version identifier (not strictly time-bounded). The search for such a 
configuration is executed by the Controller by triggering the script searchconf ig shown in Figure 
11. 

(defmethod searchConfig((self Collector) version) 
(send [:broad :express] :selector freeze) 
(send [:broad :a11 :express] :selector sameversion :args version) 
(send (get-collection self) :spray :selector awake) 
(send (get-collection self) :selector display) > 

Fig. 11: The script designed to select a configuration. 

The main goal of this script is to make active all and only those HypAgents belonging to the 
designated version. To reach this goal, firstly all the nodes of the hypertext are frozen in parallel 
(line 1) and secondly a multicasting message is sent across the net, with the provision that also 
inhibited agents are to be addressed, in such a way that each HypAgent tries to match its version 
mark with the desired one (line 2). When this match is successful, the agent enters into a new 
collection. The script searchconf ig requires this new collection to become active (line 3) and 
then to display itself (line 4). To explain this mechanism in more detail, let us re-consider Figure 
10. The user requires to go back to the configuration identified by the mark ti+l. 

Fig. 12: The result of the configuration ti+l selection. 

Looking at Figure 12, a number of send messages is addressed on the net. The effect of the 
send is the awakening of those HypAgents that belong to the configuration ti+l (Nlvl, N2v1, N3 
and N4). We can note that our approach is not restricted to a time-based management. In fact, a 
very similar implementation of the searchconf ig script is adopted to handle situations in which 
the user requires access to versions of hypertext objects on the basis of their attribute values [ll]. 

4.4. Related Worlcs 

Our agent-based model represents a new strategy to conceive of hypertexts. The novelty of our 
approach consists in a strong decentralization and distribution of control mechanism that operates 
on the nodes of hypertext. As a result of this approach, the node is no longer a passive container 
of knowledge [15], but it takes the role of an active entity that owns enough knowledge in order to 
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establish communication with corresponding neighbours. The usual separation between node and 

structure versioning [22, 501 is broken: we treat both aspects of versioning, gaining in simplicity and 
uniformity, and avoiding the necessity to define separate resolution strategies. Our version group 
(that is, the set of all entities which are considered versions of the same entity [42]) is implicit, 
beca,use any clone knows its original node. An other interesting consequence of the cloning is that 
the system maintains the consistency of knowledge [24, 361 and allows, differently from Neptune 
[12] for instance, to track the derivation history, by linking new version to an older one. Our 
configuration definition, in some aspects similar to the concepts of context described in PIE [I91 
or in [42], is characterized by a different composition law of the layers. In fact, in our approach, 
the configuration (context) is not the sum [42] or the combination [19] of layers: the partition of 

the hypertext is carried out by appropriate awakening of populations of agents existing in the net. 
Moreover, we do not suffer from particular strategies to handle the links [22], because they are 
seen as pure relations (acquaintances) between agents. As in [21], we recognize the importance 

to access versions of hypertext on the basis of their attribute values and we support user-decided 
versioning and session-based versioning, by differentiating their handling as stressed in [36]. 

5. COLLABOR.ATIVE VERSION CONTROL MANAGEMENT IN MULTI-USER, 
COLLABORATIVE MODE 

The importance of versioning for CSCW applications is stressed when versioning is combined 
with other collaborative techniques, such as semi-synchronous and synchronous collaboration. The 
integrat,ion of versioning into semi-synchronous and synchronous groupwork environments allows 

users to select a certain state of their work, to be aware of related changes and to cooperate with 
others either asynchronously or synchronously [44]. 

The problem is that the needs of a collaborative group are different from those of an indi- 
vidual user. For this reason, the support of collaborative work requires re-examining the design 

assumptions that have hitherto been used in building tools for individual use [47]. The necessity of 
redesigning the target architecture is avoided in our approach; in fact, the agent-based paradigm 

constitutes a natural and attractive technique to solve problems arising from collaborative-based 
domains. Thanks to this approach the extension of our model has not forced to change the basic 
hypertext platform; but only to enrich the agent population with new entities and to define new co- 
operation schemes. In the following section, after having sketched the extension of our framework, 
we discuss the cooperation strategies which enable us to support, CSCW. 

5.1. Extending the Model for CS’CW 

The extension has been applied in two directions: 

l Improve the HypAgent with local intelligence to support lock/unlock operations on the ac- 
quaintances of the node. Essentially, it is necessary to introduce new script entities which 
control access to the resources, enabling one to distinguish the operation mode for each me- 
dia text, image, sound. Furthermore, such scripts may apply on links (the acquaintances 
fromAgent/toAgent), since these resources are defined as local to the HypAgents. 

l Define new agent populations to adapt our previous model for a CSCW environment 

In particular, this last extension has generated a new agent population that acts as an interface 
between the hypertext resource and the different users [31]: such new agents are named UserAgents 
[lo]. The complete organization is depicted in Figure 13. 

For each new user we have a corresponding UserAgent in order to manage the possible con- 
current actions with the other users that may concurrently, or not, cooperate for reading/writing 
operations. Analogous to the HypAgents, there exists a meta-level object for the UserAgents. The 
Collector that organizes the UserAgents is named UserCollector. Its main role is to synchronize 
the different active UserAgents. 

In the next section, we discuss the behavior of these new agents, focusing our attention on a 
CSCW environment. 
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Mets-level agents 

Bchavid-level ape& 

tNc¶uml-level agents 

Fig. 13: The CSCW extension introduces the Lehauioml-level agents 

5.2. Cooperation Schemes 

To generalize our discussion we suppose that n users are active on the net in a given instant. In 

particular, Ic users are focused on the same node Nl, while the remaining n - k are located outside 
Nl. In this paper we concentrate our discussion on these agent categories: 

. UA;(; . the set of UserAgents on Nl which execute r/w (read/write) operations; 

p/w 
b U%+l..n the set of the remaining UserAgents. 

To simplify our discussion, we treat only the concurrent reading/writing processes occurring on 

the HypAgent Nl, taking into account that such restriction does not affect the generality of our 

method. 
In the following subsections, we list the possible situations that demand the use of cooperation 

activities between the UserAgents, the HypAgents and the Collectors. For each of these cases, we 
provide the basic features of the collaborative version control management, showing how this is 

carried out in a concurrent way. 

5.3. Case 1: Reading Activity. 

Users are involved only in reading activity. Standard browsing demanded. 

5.4. Case 2: a Single Writer UAY. 

This situation is depicted in Figure 14a t. The first task is to apply the versioning procedure 

on Nl; this task is accomplished in the way discussed in section 4. 

Fig. 14: One writer UAY and k - 1 readers on Nl and n - k readers outside Nl 

Then, the acquaintances selected by the user for modification are locked; this process is exe- 
cuted in parallel since the HypAgent utilizes the multicast message passing facility. Afterwards, a 
notification mechanism must be executed. All the UserAgents must be informed about the writing 
on Nl. At the meta-level object, the UserCollector knows all the UserAgents; this information 
enables the UserCollector to send, in multicast, the notification message. In this situation, the 
users behavior falls in two categories: 

tTo avoid graphical confusion, in the next figures, any time that we apply versioning on Nl, the object Nlvj, for 
a generic j, represents the cloning of Nl and its neighbours. 
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l those (UAZ,,,,,) that want to share the view of the new Nl (Nlvl) according to the 

WYSIWIS principle; 

l those (UA,‘,,,,, ) that do not want to share. 

More precisely, if UA;,,j+l belong to the first category, then the link between each U45,,,+, and 
Nl is removed and a new link is established between each UA~,,,,, and Nlvl. The remaining 

UR’ agents may acquire a new link for Nlvl. No particular action is required for the second user 

category LJA,‘,,, ,k. This situation is depicted in Figure 14b. 

5.5. Case 3: p Writers UAY,, on Separate Acquaintances. 

Let, UAY UAY UAF be the UserAgents wanting to write on the HypAgent Nl in different 

acquaintances, as shown in Figure 15a. 

Fig. 15: p writers and k - p readers on Nl and n - k readers outside Nl 

Parallel versioning mechanisms are executed independently for each of the CTA” __ 
writ,ers (see 

Figure 15b). The locking operation is then applied and notification is sent by the UserCollector 
on all the UserAgents in multicast. At this point, the LJAY UA,” may work according t,o the 

following schemes: 

l UK, want to work in WYSIWIS mode. In this case, the relative cloned sub-sections (in 

Figure 15b, Nlvl, . ..) associated with the writing UserAgents (UAY,,) are merged in a 
unique texture, i.e. a unique cloned subsection (Nlvlx in Figure 15~) on which the different 
users work concurrently. 

. U&+1.., want to work in separate mode. In this case, no particular action is required. 
The different cloned HypAgents (Nlvx+l, . . . . Nlvp in Figure 15~) are maintained for ea.ch 

UserAgent UAF+;,,,,. At the end of the modification session, the cloned sub-sections could 

be collapsed in a unique texture. 

. UK+,.., want to work in loose cooperation mode. This means t,hat some LTA,“el,.v users 
want to see the writing operation accomplished by other users on Nl without being observed 
in their writing activity. This situation is treated by adding a link between each UAF+l,,, 
towards the selected cloned sub-sections. This action is represented in Figure 15c, where 
additional links are shown between the HypAgents UA,“+,,,, and the cloned sub-sections 
Nlvlx, , Nlvp . 

The remaining UR’ that want to see the writing operation must express such intention to the 
UserCollector, that may allow this need by adding a new link. 

5.6. Case 4: More than One UAY,, Writer on a Same Acquaintance. 

The unique difference with respect to the previous state is on the need to synchronize the 
access to the same resource. The synchronization is monitored by the meta-level object UserCol- 
lector to better control the lock-unlock activities and the notification process. In particular, the 
synchronization is fundamental in WYSIWIS mode. 

IWYSIWIS is for What You See Is What I See. 
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5.7. Case 5: There Exists at least One UAY,, Writer and at least One UR&.;,,,, Writer on a Nl 
Neighbour. 

Let Nneib be the node neighbour of Nl. This situation must be considered during the version 
mechanism applied on Nl. In fact, if UA” and UR” work on separate acquaintances, then the 
cloning is not applied on Nneib; in this way UAW may refer to the Nneib HypAgent without affecting 
the consistency of the model. The sharing of resources may occur if both the UAW and UR” want 

to modify the same link between Nl and Nneib. In this case, the UserCollector provides appropriate 

synchronization mechanisms, according to the previously described cases. 

5.8. Considerations 

Let us focus our attention on some important points: 

l Agent-based Systems handle problems disseminating tasks and knowledge among different 
autonomous entities. This allows us to treat the basic CSCW mechanisms [51] (notification, 
lock/unlock) in a more natural way, since the operational model supports directly collabora- 

tion issues. 

l The Meta-level agents layer allows us to visualize and to browse configurations. In particu- 
lar, if different alternative configurations exist in the same document, all of them are then 

visualized in such a way that the user may navigate them. 

l Our model supports an easy management of alternative configurations (which is an important 
aspect of version control [23, 35, 371); in fact, it is immediate to have them, since each past 
configuration is maintained by the system as a collection of (temporarily) inhibited entities. 

l Our versioning mechanism does not support the user in an automatic merging operation. 
This feature is very important when different users establish (inter)dependence relationships 
on a same fragment of the hypertext. The community of hypertext research names “merg- 
ing” the mechanism to treat this problem. Nevertheless the literature is rich in providing 

several (parallel) version models for hypertext applications, minor work has been spent on 

the merging [23]. A more recent approach in solving this problem consists in identifying the 
merging decisions that can be automatically taken by using as information the hypertext 

application data model and the group-work situation [39]. 

l In collaborative models, the notion of “current” configuration assumes subjective interpreta- 
tions. That is, each user has its current configuration. In our model, this is possible thanks 

to the UserAgent, that allows us to obtain an different perspective for each user who interacts 
with the hypertext. 

6. CONCLUSIONS AND FUTURE WORKS 

Due to the richness of the design space of hypertext systems, the designers are faced with 
problems for the management of a large amount of heterogeneous data and control activities. This 
paper proposes a new methodology which is able to support the impact of this difficulty. Object- 
oriented concurrent programming offers high level tools to sketch software, characterized by strong 
dissemination of data and duties, as happens in hypertext systems. Moreover, OOCP allows a 
fine grained control on multi-tasking facility, that can be efficiently supported by multi-processor 
architectures. OOCP programming environments have the reputation of being computationally 
efficient [4, 411 in the universe of high level parallel languages. In our case, we adopted a “home- 
made” OOCP language instead of using a wide-known available languages [l, 7, 481. This choice 
has inevitably led to lost of efficiency in time execution and memory allocation, as our developing 
target suffers of a prototypical status and further optimization techniques (compilation, optimal 
resource allocation, efficient process scheduling) are needed in order to improve the performances. 
The necessity of using a new OOCP language as developing tool was due essentially to our need to 
master inner features of the language, such as the message passing protocols. This problem has been 
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easier to solve in our approach, where a high level language has been extended towards OOCP by 

meta-level programming strategies. The cost of building low-level structures and control strategies 
to handle knowledge and reasoning (our agent entity definition, our communication schemes, etc.) 
has been partially recovered in a more efficient prototyping activity, where for efficiency we mean 
faster designing phase, more effective ability to define and re-define the hypertext architecture, the 
availability to change the semantics of fundamental features of the language with minor efforts. 
The work presented in this paper has been focused on the discussion of the version management,. 

The approach illustrated presents several advantages: 

l it utilizes concurrent, asynchronous computation; 

l it is described in a high-level fashion by means of specialization of the HypAgents behavior; 

l it facilitates the management of complex CSCW features, such as the notification mecha- 
nisms, through appropriate collaboration policies defined among the agents; 

l it is general and thus it can be adopted in hypertexts as well as in engineering databases; 

l it supports efficiently dynamical linking. 

These benefits stem from the underlying architecture, which is based on the agent-based pro- 

gramming paradigm. Our prototype has been tested with other versioning mechanisms [9], con- 
firming the usefulness of our approach. Some open issues remain: 

l improving HYPERCLAS with additional features in such a way as to define a complete 
language framework suitable for distributed hypertext design; 

l interfacing HYPERCLAS hypertext applications with World Wide Web (WWW) which is 

nowadays the most important network hypertext resource. 

l defining a flexible merging mechanism that allows a smart synthesis of the versions created 
by different users and maintained in this work as separate alternatives. 
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