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Abstract-After some basic concepts of fuzzy theory are briefly recalled, the problem of evaluating the 
student’s knowledge state is investigated and a suitable fuzzy measure is introduced. The properties of 
the measure are discussed and a heuristic is illustrated which uses the measure to deal with the student’s 
current learning level as regards a specific topic. Finally, it is shown how this assessment can be used by 
the teaching module to improve its tutoring strategies. 

1. INTRODUCTION 

Originating during the 197Os, Intelligent Tutoring Systems (IT%) aim to overcome the limits of 
traditional computer assisted instruction systems. This result is achieved by imposing artificial 
intelligence (AI) techniques on classical teaching methods. The objective of ITSs is to bring more 
interactivity and flexibility to tutoring domains so that the system can communicate knowledge to 
the student at the appropriate level. This goal is very exacting and is still a matter of investigation. 
In the following we present some basic issues to which textbooks such as McFarland and Parker [l] 
or Polson and Richardson[2] are an introduction. 

Although there is no general agreement about the basic structure of an ITS, most researchers 
distinguish four modules: 

Expert module, that has knowledge about the topic to be taught and generates instructional 
content. 
Student model module, that is used to assess the student’s knowledge states and to make 
hypotheses about their conceptions and reasoning strategies. 
Tutorial module, that explicates adequate tutoring strategies. 
Administrative module, that regulates all activities within the ITS and supports the interface with 
the student. 

It is fairly simple to justify the presence of these modules. In fact, we refer to an educational 
situation involving a teaching system and a student; the object of tutoring is knowledge in some 
domain and this has to be presented to the student in the most suitable way. 

The emphasis in an ITS is normally placed on the Student Module[3,4]. Different types of 
representation have been envisioned and they can essentially be partitioned into four classes[5]: 

(1) Performance measure-this does not indicate what knowledge has been acquired, only how 
much knowledge. 

(2) Overlay models-this assumes that the student’s knowledge is a subset of the expert’s. 
(3) Buggy models-student knowledge is represented as a set of bugs/misconceptions. 
(4) Simulations-from a protocol analysis of the student’s behavior, an executable model is built. 

This represents the student’s knowledge and can be used to solve the problems presented. 

It is worth emphasizing that these types of representation heavily rely on traditional logic; 
however we note that the learning level is a concept inherently vague and imprecise and as a 
consequence, student modeling may greatly benefit from the application of fuzzy theory whose 
specific purpose is to manage such types of concepts and situations. 

2. THE THEORY OF FUZZY SETS 

The theory of fuzziness aims at managing with concepts and situations that cannot be described 
in precise terms since they are inherently vague and non-specific. The term “fuzzy” first appeared 
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in a paper by Zadeh [6] where he speaks about “mathematics of fuzzy or cloudy quantities which 
are not describable in terms of probability distributions”. Examples drawn from daily life are terms 
such as tall, beautiful, intelligent which cannot be described in precise terms, or in probabilistic 
terms. Fuzziness is best expressed as follows[7]: 

“Essentially, fuzziness is a type of imprecision that stems from a grouping of elements into classes 
that do not have sharply defined boundaries, such classes+alled fuzzy sets-arise, for example, 
whenever we describe ambiguity, vagueness, and ambivalence in mathematical models of empirical 
phenomena.” 

In 1965 the concept of fuzzy sets was formalized by Zadeh[8] and in the last two decades the 
theory of fuzzy sets has been developing steadily. Persons working in various areas consider fuzzy 
sets as a concern and a tool: disciplines such as logic, AI, decision theory, genetics have already 
been affected by the theory of fuzzy sets and successful applications have been developed. 

Before illustrating how fuzziness can be useful to evaluate the student’s cognitive state, we define 
what a fuzzy set is. Informally a fuzzy set is a class of objects which does not have precisely defined 
criteria of membership so that membership is no longer an all-or-nothing notion. Transition 
between membership and nonmembership is gradual rather than abrupt. 

A fuzzy set can be formally defined as follows. Let X be a set of objects, whose generic elements 
are noted by x. Membership in a classical subset A of X is often dealt with a characteristic function 
xA(x) such that x*(x) = 1 iff x E A, 0 otherwise. The set (0, l} is called a valuation set. If the 
valuation set is allowed to be the real interval [0, 11, A is called a fuzzy set. The function xA(x) 
is the grade of membership of x in A. Thus, A is a subset of X which has no sharp boundary and 
the closer the value of x*(.x) is to 1, the more x belongs to A. 

As a consequence of this definition a fuzzy set A is completely characterized by the set of pairs 

A = ((.G xA(xN}, x E X}. 

It is apparent that also educational systems can benefit from the theory of fuzziness: for example, 
a student might be “lazy” or “willing” and these are classical fuzzy concepts. Then, as student 
modeling aims at evaluating the student’s performance starting from available data a fuzzy 
approach can cope with a situation whose elements are inherently imprecise and uncertain. 

3. THE FUZZY MEASURE 

In order to introduce a suitable fuzzy measure which can be useful for student modeling, we have 
to consider the set A = {x, X*(X)}, where x denotes the generic concept and the characteristic 
function expresses to what extent the concept is mastered by the student; thus essentially each 
concept gets associated with a fuzzy weight. 

The initial values of the weights are assigned by default or can stem from preliminary entry tests. 
Subsequently weights are dynamically managed and suitably modified according to the student’s 
behavior. 

The crucial point is to make hypotheses about the evolution of the weights during the tutoring 
session. We suppose that, when the student answers a specific question asked by the system, the 
expert module should be able to classify the answer beyond the mere partition right-wrong. More 
precisely we suppose that the inference engine supplies a m-ple where each element is associated 
with one of the concepts of procedures involved in the exercise. Each element rates the student’s 
answer in terms of the associated concepts or procedures. Thus, we assume that there are n possible 
answers associated with each question and, among these, i answers are to be considered as right 
to some extent (0 < i < = n) andj answers as wrong (j = i - n). The expert module associates with 
each right answer an integer k whose maximum value is i, and with each wrong answer an integer 
k whose minimum value is j. We want that, after each question, the fuzzy weight is increased or 
decreased according to the correctness or incorrectness of the student’s answer. 

To allow dynamic evolution to the above-mentioned framework, we have to introduce a suitable 
function ranging in the interval [0, l] whose arguments are the fuzzy weight w and the answer value 
(i orj) and whose behavior is increasing if the answer is right and decreasing if the answer is wrong. 

We note the functions root n-th and power n-th satisfy these requirements and moreover their 
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behavior is such that it can truly be viewed as the student’s learning curve. Other models in 
literature present similar functions[9]: Chen and Kurt explicitly suggest modifying the student’s 
learning level “by dilatation” or “by concentration”, and this is equivalent to our approach, but 
they do not care to compute the positive or negative steps carried out by the student. 

This discussion about the properties of the function leads us to the following. 
Definition. The fuzzy weight w is recursively defined as follows: 

w’: (w, k) + 

{ 

w”Zk O<k < =i 

W21k’ j< =k<O w~(O,t) 

wiki j<=k<O w~[t,l) 

where w is the current value of the fuzzy weight, n is the overall number of answers, i and j are 
the maximum and minimum values as regards right and wrong answers, respectively, and k is the 
value associated with the concept present in the exercise. 

As regards the meaning of the parameter t, we note that the interval [t, 1) indicates the range 
of values for which the student is assumed to have mastery of a specific concept. Moreover, we 
stress that the function w’ in the interval [t, 1) does not exhibit a symmetric behavior: this 
circumstance is correct since several noise factors, e.g. careless mistakes, bias the results of 
an exercise and it is worth not emphasizing their influence when the fuzzy weight is beyond 
a threshold value. As regards the range of values for the parameter t, we observe that in the 
interval [0.7,0.9], for each of the lines, one can recognize a value for t from which onwards the 
derivative is next to zero, and this mathematical feature models adequately the fact that, when a 
certain level of knowledge is achieved, further slight variations must affect partially the overall 
assessment. 

In a similar way, we have to fix appropriate ranges of values for the weight w, each corresponding 
to a learning level. To this aim, the interval [0, l] can be partitioned into three sub-intervals: 

Level 1 w E (0, s) (no knowledge) 
Level 2 w E [s, t] (the system is unable to assess) 
Level 3 w E (t, 1) (knowledge) 

Finally we have to discuss what a reasonable range of values for the parameter s is. We note 
that starting from the value 3.5 the derivative of the power function takes values next to zero 
whereas the derivative of the root function takes high values: this fact models adequately the fact 
that if the learning level of a concept is low and a right answer occurs the level should be increased 
to a reasonable extent, whereas a wrong answer can only slightly affect a situation already 
compromised. 

4. A HEURISTIC FOR STUDENT MODELING 

In the following we suppose that the topic to be taught includes concepts and related procedures. 
This is not a limiting feature and allows, for mathematical topics, one to achieve effective 
and practical management of the student’s knowledge. The student module consists of three 
submodules: 

Knowledge: this submodule contains all the topics learnt by the student 
Characteristics: this stores peculiar traits of the student 
History: this includes all relevant information about the specific teaching path. 

We focus our attention on the Knowledge Module since the others are not affected by our fuzzy 
approach and can be developed in a traditional way. The task of the Knowledge Module is to store 
the student’s knowledge level about the topic to be learnt. This level has to be managed dynamically 
by means of the fuzzy measure. The structure of the Knowledge Module is depicted in Fig. 1. 

We can consider two distinct classes: conceptual knowledge and procedural knowledge. In each 
class, PaneA contains the knowledge mastered by the student, PaneB contains concepts and 
procedures whose mastery has not been achieved by the student, and PaneC includes student’s 



332 ANTONIOGISOLFI et al. 

Fig. 1. The internal architecture of the knowledge module. 

mal-knowledge. In all panes is also present, associated with each concept or procedure, the fuzzy 
weight w. 

To illustrate the heuristics which drive knowledge acquisition and its cancellation from the panes, 
let us consider the following example. Suppose that the student is asked to measure the perimeter 
of a right-angled triangle starting with the measurements of its three sides. If the student’s answer 
is wrong, the student might be not good at figures or does not know the concept of perimeter. 
In general, the student will get the correct answer or a wrong one according to the pattern depicted 
in Table 1. 

Our heuristic deals in the same way with the two cases in which the right answer is gotten because 
the probability that the student gets the right answer several times starting from wrong assumptions 
is very low. The system investigates to some extent whether the right result is achieved by chance 
and only when the value of the fuzzy weight w’(w, k) exceeds the threshold value is student mastery 
assumed. Wrong calculations and careless mistakes are treated by the heuristics such that the 
evaluation is only partially affected by their occurrence. However, the case in which a wrong answer 
occurs because of an incorrect choice of procedure receives most attention since this is when a 
misconception occurred. 

For instance, consider the above-mentioned example and assume that the lengths of the catheti 
(the two shorter sides) equal 7 and 4. Then if the student answers incorrectly that the perimeter 
equals 14 then the system releases control to the expert module in order to recognize the keywords 
present in the exercise. They are ~~rirne~er~ triangle, righr-u~g~e~ triangle, cathetus, hypofenuse and 
Pythagoras’ theorem. Thus, the inference engine starts considering rules and mal-rules, facts and 
non-facts and, starting from the student’s answer, tracks backward the chain which has led to the 
wrong answer. If one path is recognized, panes are suitably updated, otherwise other exercises are 
suggested by the system. In case the system is unable to back track then the whole exercise is stored 
in a specific module and will be subsequently examined by the human expert to enlarge the 
inferential abilities of the system. In our example, the system realizes that the procedure 
~rea~easurement has been applied in the wrong circumstance. 

This heuristic, as applied to the concepts c, , c2, . . . , c, and to the procedures pi ,pz, . . . , p,, can 
be stated in general terms as follows: 

1. Activate the engine for the concepts and procedures (c, , cl, . . . , ch,p, ,pz, . . . ,pz). 
2. If only one path is gotten 

then compute the fuzzy weight w’. 
Store the ma&rule or the non-fact in PaneC. 
For the remaining c, (or p,), 

if the corresponding value w E [t, l), then c, (or p,) are stored in PaneA; 
if w E [s, t), then c, (or p,.) are stored in PaneB 

Procedure 

Table 1. Analysis of student responses 

AEMVer Remarks 

Right 
Right 
Wr0lle 

Right 
Wrong 
Rieht 
WrGng 

OK 
Wrong calculation, careless mistakes 

Verv unlikelv 
Conceptual 0; proced&al mistake 
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3. Zf several paths are recognized 
tken Suggest new exercises involving concepts and procedures related to the paths 
else Store the whole exercise into the specific module and do not draw any conclusion 

This heuristic is self-explaining except as regards the selection of new exercises and this matter 
will be discussed in the next section. 

5. THE TEACHING STRATEGY 

The exercises to be suggested to the student certainly are chosen depending on tutoring goals 
to be achieved, yet they depend also upon concepts and procedures stored in PaneB. Thus, exercises 
are stored in a library whose directory contains the keywords related to each exercise. The selection 
process is driven by a module which operates in forward-chaining mode starting from concepts that 
are facts and procedures that are the union of several rules. Then the teaching module, by means 
of the information present in PaneA, PaneB and PaneC, recognizes the exercise to be suggested. 

Consider an example. Suppose that we want to decide whether a careless mistake or a conceptual 
error occurred when the student incorrectly answered that the perimeter equals 14. In this case the 
forward module can suggest a similar exercise with different sides. The concepts and the procedures 
involved in the new exercise are a subset of those related to the old one. The unique constraint 
is that only one of them will not belong to PaneA of the student; thus possible sources of error 
are, step by step, taken in consideration. 

In general, let Fi be the known facts, corresponding to concepts, let FDi be the inferred facts 
and let Ri be a set of rules, corresponding to a procedure, and place in round brackets the particular 
instance of a concept or a procedure. A tree is built up by the module, as shown in Fig. 2, where 
rules are represented by leaf nodes and known and infered facts by other nodes: nodes and branches 
are labeled by means of the used instances. In the tree, known facts represent the hypotheses of 
the problem, leaf nodes represent the thesis. Of course, if concepts and procedures present in the 
PaneC are considered, this happens only for the arguments: the concept or procedure are drawn 
by the corresponding object knowledge. 

In the above-mentioned example, one has: 

Fl = given fact-concept of right-angled triangle. 
F2(3) = given fact---concept of cathetus whose length equals 3. 
F3(5) = given fact--concept of hypotenuse whose length equals 5. 

FDI (4) = deduced fact-length of the cathetus = 4. 
FDZ(l2) = deduced fast-measurement of the perimeter = 12. 

R1(5,-,3) = union of several rules leading to the Pythagoras’ theorem, where the hypotenuse 
equals 5 and a cathetus equals 3. 

R2(3,4,5) = rule for measuring a three-sided polygon. 

As depicted in Fig. 2, concepts and procedures are drawn from the knowledge base with the only 
provision that only one concept or procedure can be not present in PaneA. 

In such a way, starting from known facts (right-angled triangle whose hypotenuse equals 5 and 
whose cathetus equals 3) the conclusion is inferred that the perimeter equals 12. This will be the 
exercise which will be suggested or in explicit form-“Prove that, given a right-angled triangle 

Pf~9(3),~3(5) +_._.___ ._._._._. i 
OBJECT WRONG 

~OWLE~GE ~O~EDGE 

PaneC 

,F 

! i \ 

FD2(12) f 
CE 

n L E 
i..._.....___._._._._._._._._._._._._._._._._.-.-.~ L._._._._._._._,_._L_._._._._._._._._._._._._._._._._._._._._.*._._.~.~._,_._.~.~.~.~.~.~.~.~.~.~.-.-.-.-.-.-~ 

Fig. 2. Selecting the exercises, 
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whose hypotenuse and cathetus equal 5 and 3, respectively, the perimeter measurement equals 12” 
or in interrogative for-n-“Given a right-angled triangle whose hypotenuse and cathetus equal 5 
and 3, respectively, what is the measure of the perimeter?“. 

Of course this is only one among many possible exercises: in fact, the instances are pseudo-ran- 
dom and moreover the forward module uses several rules and consequently many leaf nodes are 
obtained each corresponding to a different exercise. 

Now we have to consider that an exercise can be suggested as the final part of a lesson or to 
help the student to overcome some difficulties. In both cases the system recognizes a subset of 
concepts and procedures, and generates the exercises according to the above sketched guidelines. 
However, in the first case the keywords are stored in advance by the human expert whereas in the 
second case the keywords are related to the exercise answered incorrectly by the student. 

As regards the procedure to select the most appropriate exercise among those generated we note 
that when the tutoring goal is to improve the student’s knowledge concerning a specific concept, 
exercises containing a minimum of other concepts are to be chosen. However, this minimum 
number depends upon the mean value of the fuzzy weights w related to n taught topics. Thus we 
have to take in account the quantity C, = Cw,/n which measures the student’s overall learning level: 
the value taken by this function also affects the choice of the exercises since more difficult ones 
will be suggested in the presence of high values of the function. 

6. CONCLUSION 

We are aware that the work so far described is only a starting point for the introduction of 
non-traditional logics to deal with the student’s cognitive state. Yet we think that the fuzziness 
inherently present when the student’s learning level is to be evaluated, merits further scrutiny of 
this approach. The strategy for student modeling is based on a heuristic procedure yet, if the 
effective management of the student’s knowledge is the primary goal, it is practical and feasible. 
The teaching module can benefit also from this approach. 

The first-level prototype of the student module based on the fuzzy weight, which dynamically 
manages the student’s learning level, is undergoing field-testing in various mathematical areas and 
the preliminary results are rather encouraging. 
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